
Combining cognitive, semiotic and discourse analysis 
to explore the power of notations in visual 

programming 
 

Juliana J. Ferreira1, Clarisse S. de Souza1, Luciana C. de Castro Salgado1,2,  
Cleyton Slaviero2, Carla F. Leitão1, Fabio Moreira2 

1Departamento de Informática, PUC-Rio 
Rio de Janeiro – RJ, Brazil 

2 Instituto de Computação, UFF  
Niterói – RJ, Brazil 

{jferreira, clarisse, lsalgado, cfaria}@inf.puc-rio.br 
cslaviero@gmail.com, ffmoreira1@hotmail.com

 
 

Abstract — Using game design and programming to foster 
computational thinking acquisition has proved to be a successful 
strategy in recent years. In previous research with AgentSheets, 
we concluded that the semiotic richness of this visual 
programming environment, specifically designed to support 
computational thinking acquisition, could be explored more 
extensively to the benefit of learners. In particular, we realized 
that there are some additional representations of AgentSheets 
games and simulations that are not presented as programming 
tools in the interface, but yet they communicate new relevant 
meanings to the users. This paper reports on research where we 
artificially introduced such representations in a small follow-up 
experiment with selected participants from our previous research 
experiment. Our goal was to investigate the impact of such 
additional representations on program comprehension and 
modification tasks. To this end we contrasted empirical evidence 
of their performance in the two tasks with their verbal account of 
experience with AgentSheets. We used a combination of 
discourse analysis and inspections using Semiotic Engineering 
methods and the Cognitive Dimensions of Notations framework. 
Our findings go in two directions. First, we observed that 
additional representations have allowed participants to expand 
and correct previous learning. Therefore such representations 
can support new teaching strategies in computational thinking 
acquisition programs with AgentSheets. Second, we learned that 
the combination of methods we used to analyze empirical data – 
discourse analysis with semiotic and cognitive inspection 
techniques – can be used systematically in other research 
contexts, holding the promise of insightful results. 

Keywords - computational thinking, end-user programming, 
visual programming, cognitive dimentions of notations, semiotic 
engineering methods. 

I. INTRODUCTION  

In order to be able to create various kinds of computer 
content such as contemporary websites, for example, end users 
need to think computationally. In other words, they must be 
able to express what they mean in algorithmic form, using the 

vocabulary, grammar and semantic constraints inherent to all 
computer languages. These are available in various guises: 
from classical programming languages to user-friendly visual 
languages, with a number of hybrid-style specification and 
scripting languages between the two extremes.  

Computer programming has quickly become an important 
means for self-expression and participation in 21st century 
society. But to achieve this end, computer users must not only 
learn how to read and write in computer languages, but also to 
think and reason using computer languages as representational 
support. Hence the effort placed in stimulating computational 
thinking acquisition. [7] 

 

 

Figure 1. Editing an 
agent’s depiction 

Figure 2. Editing an agent’s “if-then” 
behavior rule 

AgentSheets is a visual agent-based programming 
environment specifically designed to support learning of 
computational thinking while building games and simulations. 
[11] It includes a number of different notations that can be 
manipulated by users as they build their own games or 
simulations. Visual notations are the most salient ones in 
AgentSheets. With them, users can do most of their 
programming in this environment. For example, to create an 
agent (the basis of all programs) users interact with graphical 
interface controls (see Figure 1). Likewise, to specify rules of 
agent behavior, users perform interface actions like clicking, 

Accepted for publication in the Proceedings of VL/HCC'2012 Innsbruck, Austria, Sep 30 - Oct 4, 2012

Ferreira, de Souza, Salgado, Slaviero, Leitão & Moreira, 2012 1



dragging and dropping visual elements, pressing keys and 
typing in data (see Figure 2). Notice that there are at least two 
notations in these examples: the visual interface layout and 
controls language and the visual programming language (see 
the visual “if-then” rule representation in Figure 2. 

AgentSheets users have different representations of their 
programs (typically games and simulations, as already 
mentioned). Some of them are static, like agent depictions and 
behavior rules shown above, whereas others are dynamic, like 
AgentSheets’ conversational programming feature [10], which 
paints true and false conditions (the “if” part of behavior rules) 
with different colors during program execution. This kind of 
animation helps the users understand why agents do what they 
do when the program is running. 

In previous research using Semiotic Engineering [3] to 
investigate how learners express meanings computationally in 
AgentSheets [4], we concluded that the semiotic richness of 
this visual programming tool could be more extensively 
explored to introduce different aspects of computational 
thinking. In particular, we saw that AgentSheets had more 
representational resources than its interface design suggested. 
One such case was the program report, a static representation 
of the whole program (in visual notation), which was 
communicated in the interface as some secondary function of 
relatively minor interest to learners. In Figure 3 we see the 
visual and semantic salience of other programming tools, 
compared to the program report. The three palettes (visual 
tools for visual programming environments) are clearly 
presented as more relevant than the other menu entries; note in 
particular that there are two separators in the menu, defining 
three menu sections. The “report” appears in the third one. 

 

Figure 3: Menu entry for generating the program report 

The program report is an html file that displays all agents 
and their corresponding behavior. Together, this is the full 
specification of a game or simulation – the full program. The 
complete static view of the program is not provided by any of 
the other notations in AgentSheets. For example, in order to 
compare the behavior of two related agents, the user has to 
keep two “behavior” windows open, one for each agent. In 
typical displays, it may be impossible to view more than half a 
dozen behavior rules, especially if they involve a conjunctions 
of conditions and/or actions. As a result, representations of the 
whole are hard to get. The only exception is, of course, the 
game or simulation, while it runs. This is a complete dynamic 
representation of the whole program. 

This paper presents the results of a qualitative study with 
which we investigated the impact of using the AgentSheets 

program report as an additional notation in program 
comprehension and program representation activities. We used 
a combination of three qualitative methods. Discourse Analysis 
[5] helped us understand the participants’ feelings and 
meanings in relation with AgentSheets and the activity they 
had to perform. Semiotic Engineering concepts and inspection 
methods [2] helped us analyze the meanings communicated by 
AgentSheets designers through the system’s interface. And 
finally the Cognitive Dimensions of Notations framework [1] 
helped us identify cognitive loads associated with the various 
notations used in AgentSheets, and the relations between them. 

Our conclusions bring practical and methodological 
contributions to the broader ongoing research path in visual 
programming and computational thinking acquisition. In 
practical terms, we show why and how hybrid notations have 
helped participants to expand and correct previous learning. 
We also show that they can thus support new teaching 
strategies in computational thinking acquisition programs with 
AgentSheets. In methodological terms, we have strong 
indication that our combination of methods can be used 
systematically in other research contexts, holding the promise 
of insightful results. 

The paper is structured in four sections. After the 
introduction, we present the research description, including a 
brief account of prior experiments and its results, as well as a 
description of how three methods were combined in the 
analysis of data collected for this study. In the third section we 
present our research findings and finally the last section we 
present our conclusions and future work. 

II. RESEARCH DESCRIPTION 

In previous research [4], carried out in 2010, we verified 
that the students’ semiotic strategies when using the 
AgentSheets visual language to express their intent could be 
further explored by instructors in order to advance important 
computational concepts. The next question in our research path 
was, naturally: “How this should be done?” In order to find an 
answer, we did new empirical research, combining data and 
findings from 2010 with new data collected in 2011. Just as 
before, the new study followed a qualitative methodology, 
where meaning is at the center of investigation. 

A. Previous Experiment and its Results: 

Our first experiment was run during an after-class 
computational thinking acquisition (CTA) program in Brazil 
for which twenty 9th-grade students, thirteen females and 
seven males between 14 and 16 years of age, voluntarily 
enrolled. [4] The program followed the Scalable Game Design 
(SGD) project orientation [12] and extended over seven two-
hour weekly sessions. We worked with data collected in (a) 
face-to-face interviews with students about the games they 
were building and (b) successive versions of their games. We 
used discourse analysis [5] to interpret data collected in 
interviews and semiotic inspection elements [2] along with 
semiotic theories [8][9] to interpret static and dynamic program 
representations. We compared meanings and expressive 
choices emerging from natural language narratives describing 
the game with those from static agent depiction and behavior 

Accepted for publication in the Proceedings of VL/HCC'2012 Innsbruck, Austria, Sep 30 - Oct 4, 2012

Ferreira, de Souza, Salgado, Slaviero, Leitão & Moreira, 2012 2



specifications and dynamic game play experience. Our 
conclusion was that AgentSheets presented a wealth of related 
representations that could be yet further organized and 
explored to enhance the teaching-learning process in CTA 
projects. 

B. Further Explorations with SIM: 

In 2011 we continued our research first taking a closer look 
at the meanings communicated by AgentSheets designers 
through the system’s interface. To this end we used the 
Semiotic Inspection Method (SIM) [2], which allows us to 
characterize how interface designers organize and structure 
various signs (like words, images, layout, widgets, animations, 
screen patterns and sequences, etc.) to tell the users an 
interactive message that we can paraphrase as this: 

“Here is my understanding of who you are, what I’ve 
learned you want or need to do, in which preferred ways, 
and why. This is the system that I have therefore designed 
for you, and this is the way you can or should use it in order 
to fulfill a range of purposes that fall within this vision.” 

In this message the first person “I” refers to the designer (or 
the person who represents the design team), whereas the “you” 
refers to the user (or targeted user community). In accordance 
with Semiotic Engineering [3], this method frames human-
computer interaction as a special case of computer-mediated 
human (designer-user) communication and analyzes how this 
communication is emitted, that is, sent from designers to users. 

Among other results not directly related to the theme of this 
paper, we found that although the designer’s message is almost 
entirely communicated with signs that appear in the gallery of 
agents, game worksheet and agent behavior rules windows (see 
Figure 4), there is a complete static representation of the 
program (encoded in the same visual language used in the rest 
of AgentSheets) very weakly communicated, as showed in the 
last sub-section of the “Tools” menu in the menu bar – the 
program report (see Figure 3 above). . 

 

Figure 4. AgentSheets main visual elements 

Just like the program worksheet is the complete dynamic 
representation of the program, the program report is the 
complete static representation of all specified elements that 
constitute the program and whose activation causes the game 
experience. One of the distinctive features of the program 
report, compared to all other static representations of the 
program (like behavior rules or agent depictions, for instance) 
is that in it we can see the whole set of specifications for all the 
program elements, and not only the parts associated to a 
particular selected agent. To be precise, a critically important 

program element – the program worksheet (with background 
image and localization of all agent instances at the initial game 
state) – is not included in the program report. However, as 
further analysis has shown, nothing prevents that the program 
worksheet be included in the program report, turning it into the 
exact static representational counter-part of the animated 
program play. 

C. The new qualitative study with CTA learners: 

We carried out a small qualitative study to explore the 
impact using the program report in program comprehension 
and program modification tasks with AgentSheets. We invited 
four students who had followed the entire 2010 CTA project 
and whose games ranked among the best in the class. We met 
them one year after they had finished the project. During a 90-
minute session we interviewed them individually, to find out 
what they recalled from the project, what feelings and attitudes 
they had regarding CTA, AgentSheets and the entire learning 
experience, and if somehow they had continued their learning 
after the project was over (or wished they would be able to do 
so). In the interview, they were encouraged to speak freely of 
their past experience in the project, so that we could collect a 
rich set of meanings that each participant assigned to learning 
computational thinking with AgentSheets, 

 

Figure 5. Extended report = Report + Background screen 
content 

After the interview, participants went to the computer to 
have a new encounter with AgentSheets, after one year since 
their last CTA class. Their task was to play with and examine a 
new program, called Fish Tank. However, unlike what 
happened in their previous experience with AgentSheets, this 
time they had additional printed paper sheets with an extended 
version of the program report. In it, besides the full 
specification of all agents’ names, depictions and behavior 
rules, we included a visual description of the initial program 
worksheet, with its background image and the location of all 
agent instances (see the magnified insert in Figure 5. In this 
context, they were asked to perform three tasks: (1) to explain 

Accepted for publication in the Proceedings of VL/HCC'2012 Innsbruck, Austria, Sep 30 - Oct 4, 2012

Ferreira, de Souza, Salgado, Slaviero, Leitão & Moreira, 2012 3



how the Fish Tank program worked; (2) to propose one 
modification, whatsoever, in the way it worked, showing 
briefly how this would be expressed in the program report; and 
(3) to effect this modification using AgentSheets. During the 
tasks, participants were encouraged to talk with the researcher 
about what they were doing. 

The empirical data collected from this experiment was rich. 
We gathered the audio recording of the interview, the audio 
recording of the verbal protocols during the tasks, the 
participants’ annotations on the printed program report sheets, 
the modified version of the Fish Tank program, and the 
researchers annotations made throughout the experiment. We 
also used, as additional empirical evidence, data produced by 
the participants in the previous 2010 CTA project experiment.  

D. Combined Methodology for Data Analysis 

Before we begin to describe the methodology we used for 
data analysis, we should explain why we collected such 
heterogeneous (although tightly related) kinds of data. The 
reason for this is rooted in the Semiotic Engineering 
perspective that governs this research. In it, whatever happens 
in human-computer interaction is the result of a computer-
mediated intentionally designed communication of what a 
system does, why, how, where, when, as well as to whom it has 
been designed. Therefore, in the specific context of this 
research, through the system’s interface, AgentSheets designers 
are telling computational thinking learners their whole design 
vision. Their message is heavily communicated with visual 
codes, which support a wide range of manipulations through 
which the user talks back to the system and gets it to achieve 
his or her interaction intent. 

This designer-user communication through the interface 
can be viewed from two angles. One is the emission of the 
communication, that is, how the designer encodes what he has 
to say to the users. The other is the reception of this 
communication, that is, how the users perceive, interpret and 
react to the designer’s communication. 

The whole set of data collected in this experiment allowed 
us to investigate aspects of both the emission and the reception 
of the designer-user computer-mediated communication. For 
instance, in interview and verbal protocol data we could search 
evidence of how the designers’ message was received by users. 
Likewise, in registered program states and manipulations data 
we could search evidence of how the mediated designer-user 
conversation was articulated in a real context of use. Finally, in 
static and dynamic, integral and partial, visual program 
representations used during the experiment we could search 
evidence of cognitive and semiotic operations that users must 
achieve in order to interact successfully with AgentSheets. 

This hybrid set of data was analyzed using a combination of 
three methods: discourse analysis (DA) for interview and 
verbal protocol data; Semiotic Engineering inspection methods 
and concepts (SIM) for AgentSheets designer-user 
communication signs; and the Cognitive Dimensions of 
Notations (CDN) framework for visual programming notations. 

CDN are design principles for creating or evaluating 
notations, user interfaces and programming languages used 

with information artifacts [6]. They provide a common 
vocabulary for discussing many cognitive factors of such 
representation systems. Their aim is to improve the quality of 
discussions and decisions in design and evaluation activity [1]. 
There are fourteen dimensions in the CDN framework [6]. Just 
for sake of a very brief illustration, one of them is hidden 
dependencies. It refers to a situation where one notational 
entity depends on another but the dependency is not fully 
visible in the notation itself. Another dimension is premature 
commitment, which refers to notations that require that 
decisions be made prior to having all needed information and 
knowing all the related task ordering constraints. 

CDN were chosen to analyze part of our data because the 
purpose of the entire AgentSheets technology is to support 
learning. Therefore, we must explore cognitive aspects of the 
various languages (mainly visual) used in AgentSheets if we 
want to know if and how this technology achieves its goal.  

SIM was applied for two main purposes. First, SIM helps 
us to identify the various sign systems and notations with 
which AgentSheets designers structure and communicate their 
entire design vision to users. And second, SIM helps us to 
select which notations of all the ones used in AgentSheets 
should be considered for cognitive analysis, given the role they 
play in the computer-mediated designer-user communication 
that supports the users’ learning process.  

Finally, DA was used because it provides additional 
evidence to support findings obtained with CDN and SIM. 
Specifically, by dealing with natural language discourse about 
CTA, AgentSheets, and all the elements involved in the 
activity with the Fish Tank game, DA produces evidence that 
can describe or explain how users perceive and interpret signs 
and notations. Hence, by combining DA with CDN and SIM 
we obtain a kind of closure to the interpretive analysis cycle in 
our investigation.  

The combination of methods is governed by the 
communication of design intent through interface signs. 
Therefore, SIM is applied first. Once we have a 
characterization of the designers’ message to the user, we can 
proceed to following steps with DA and CDN. DA tells us how 
the designers’ message is received and used by participants to 
accomplish specific goals, whereas CDN highlights specific 
cognitive characteristics of signs (emitted by designers and 
received by users). Together, the three help us gain a deeper 
understanding of learning processes supported by various 
interface sub-languages (i. e. notations or representation 
systems), with their structural and functional inter-relations. 

For a very brief illustration of the effects of such 
combination, in the Fish Tank program scene (the program 
worksheet), some twenty fish or so are swimming in the same 
tank as two sharks. When the program starts, fish and sharks 
move around the tank. If the player-learner sustains the 
program long enough he will realize that the number of fish is 
slowly decreasing because, every once in a while a shark eats a 
fish.  However, if the player-learner looks at the program 
report, he will quickly realize that sharks eat fish (there is a 
rule saying so). Not only this, he will also see that the 
frequency with which shark eats fish is 10% (see Figure 6). 
The two ‘notations’ (the dynamic program play language and 

Accepted for publication in the Proceedings of VL/HCC'2012 Innsbruck, Austria, Sep 30 - Oct 4, 2012

Ferreira, de Souza, Salgado, Slaviero, Leitão & Moreira, 2012 4



the static visual report language) yield different analyses 
relative to the visibility dimension, for instance. In the program 
play language the logic of the shark behavior is not as visible 
as in the visual report language.  

 

Figure 6. Part of the shark agent rules 

However, for effective learning, what must be really visible 
is the relationship between one and the other, which 
AgentSheets expresses in the Conversational Programming 
notation, for instance. However, if we look at SIM results, we 
see that each notation is shown in separate independently-
controlled windows that users may fail to configure 
appropriately. In this case, they will miss an important part of 
the designers’ message about how and why AgentSheets 
representations are related to one another.  

Discourse analysis provides us the main evidence of how 
the learner actually perceives, interprets and integrates 
information coming from communication expressed in 
different notations. Therefore we started to analyze the 
participants’ discourse by looking for elements that could be 
associated with any of the fourteen dimensions defined in 
CDN. Upon finding such elements we then examined the 
following factors: 

 Presence or absence of corresponding cognitive 
characteristic. For example, upon finding evidence that 
the participant was talking about ‘visibility’ in 
AgentSheets notations, we checked whether he or she 
was referring to the presence or absence (lack) of 
visibility in the notation. 

 The impact of presence or absence of cognitive 
characteristics. For example, once we identified that 
the participant was talking about the presence of 
‘visibility’ in a certain notation, we looked for 
evidence of value judgment: did this have a positive 
(+) or negative (-) impact on the participant’s learning 
process. 

In order to verify, instantiate and understand evidence from 
discourse analysis, we looked into the other collected data (e.g. 
annotations on the program report, state of the AgentSheets 
program, and even evidence from programs produced during 
the 2010 CTA project).  

At a later stage, evidence from discourse analysis was 
grouped into two broad meaning categories:  

 “Recollection of difficulty” - The participant narrates 
some situation when he or she faced difficulty in the 
learning process.  

 “Aha moment” - The participant suddenly gains new 
understanding about the AgentSheets notation. 

In fact we identified a third category of meanings which we 
called “AgentSheets’ idiom”. This refers to narratives when 
participants incorporated AgentSheets notation vocabulary into 
natural language discourse. However, because this category did 
not explicitly yield interesting results regarding our research 
question, we will not discuss it further in this paper. 

III. FINDINGS 

It is worth noting, at the beginning of our findings section, 
that the relation between the two factors used to analyze 
evidence in DA, presence or absence of cognitive 
characteristics and their impact on the learning process, led to 
interesting findings. This relation was very consistent within 
the scope of each CDN dimension. In other words, the presence 
or absence of the cognitive characteristic associated to the 
dimension had always the same impact (+ or -) on the learning 
process. For example, when the cognitive characteristics of 
visibility were absent, the impact was consistently negative. 
When present, the impact was consistently positive. This 
suggests that CDN is itself a consistent tool to evaluate the 
cognitive impact of sign selection and organization in building 
the various representation systems through which designers 
communicate with users. 

Another useful observation is that most of the evidence 
leading to conclusions about the impact of using the 
AgentSheets program report as a first-class visual 
programming tool came from verbal protocols collected during 
the program comprehension and program modification tasks.  

Participants reported recollections of difficulties 
encountered when they were building their first game program 
during the CTA project in 2010. They talked about the learning 
process that they went through to find a solution or a way 
around a problem. Sometimes the difficulty was overcome, but 
sometimes it developed into frustration. In the fragment below 
we find evidence of the presence of a cognitive dimension 
called progressive evaluation with a positive impact on the 
student learning process. The student reported how the notation 
let him adjust time values and see the results of the adjustment. 
"This was where I was testing with multiple agents ... the 
movement frequency ... I tested it first putting 1 second  for 
him to move randomly, it was quite slow. Then I lowered 
it to 0.5 seconds, but it was still slow ... So, I kept on lowering 
it [till it was OK]… At the time of the [2010] project it 
was something that I had a hard time mastering.” 

The recollection was triggered by a rule defined for the 
shark’s behavior (see Figure 7). In other words, by looking at 
the visual notation, the participant was able to add meanings 
related to this notation’s progressive evaluation support. 

 

Figure 7. Shark's rule of movement frequency 

In some of the narratives about past difficulties, we verified 
that the introduction of the extended program report caused a 

Accepted for publication in the Proceedings of VL/HCC'2012 Innsbruck, Austria, Sep 30 - Oct 4, 2012

Ferreira, de Souza, Salgado, Slaviero, Leitão & Moreira, 2012 5



kind of “aha moment”. That is, the participant experienced a 
breakthrough in understanding a programming situation, a rule 
or action. Sometimes even wrong understandings got corrected 
during such “aha moments”. In fact, this kind of evidence was 
very typical when the extended program report was being used. 
The combination of the dynamic and static representations of 
the complete program promoted new levels of comprehension. 

For example, one of these insight moments occurred with 
one of the participants who first thought that the Fish tank 
program was apparently meaningless. She said: “The shark has 
a will of its own and the little fish too...nobody wants to obey 
me”.  

This piece of evidence can be associated with the visibility 
dimension. Its cognitive characteristic was absent from the 
notation (the participant could not see what the program was 
doing) and it had a negative impact on the learning process (she 
therefore did not understand the program). This misconception 
was encouraged by the underlying notion developed in the 
2010 CTA project that AgentSheets programs were games, that 
is, something that users could play using interface controls 
(like arrow keys, for example). Moreover, this project was 
presented as the Scalable Game Design. So she tried to interact 
with the Fish Tank program by pressing the arrow keys, but 
nothing happened, because this was actually a simulation 
program, and not a game.  

This situation was associated with the cognitive 
characteristics of the error-proneness dimension, which when 
present had a negative impact on the learning process. 
Although AgentSheets programs can either be (interactive) 
games or (non-interactive) simulations governed by encoded 
parameter values, its interface notations associated to the game 
worksheet during program execution (the complete dynamic 
representation of the program) do not have any indication of 
which is the case.  

But when she looked at the program report, this is what she 
said: "Hmm… so this is what happens!”. She very quickly 
realized that there were no input condition rules governing the 
behavior of agents. This evidence is again related to the 
cognitive characteristic of the visibility dimension in CDN. The 
dynamic visual representation of the program in execution (i. e. 
the simulation) did not give visibility to the underlying logical 
relations established among agents. However, once the 
program report was made available to the participant, the 
underlying logic became immediately visible. More than that, 
we could also use the cognitive characteristics of the hidden 
dependency dimension to see that an important sign in the 
AgentSheets interface (and ultimately in the acquisition of 
computational thinking) – the connection between rule 
specifications and acting program execution – was hard to 
perceive. This is an interesting demonstration of how the 
combination of three methods can boost the analysis of 
observed phenomena, yielding results that exceed those that we 
typically obtain if they are used in isolation. 

Further evidence showed that another participant 
experienced his “aha moment” when looking at the program 
report he saw that the worksheet included a background image. 
Together with the disposition of agent instances in different 
locations of the program grid in the worksheet, the background 

image formed a new sign (a significant unit) for the participant, 
who said that he did not know that he could have used an 
image as the program background. The student reported 
difficulties to compose the background by creating and 
deploying background agents: “Oh! So, I have this [other] 
possibility to compose the background of the game… I built all 
my background with agents, which sometimes caused a lot of 
trouble.” We associated the cognitive characteristics of the 
error-proneness dimension of CDN with this piece of 
evidence. This also contributed to verify that whenever the 
presence of this dimension was associated with evidence, the 
participant who provided the evidence was reporting some 
negative impact of the notation on his or her learning process. 

We had, however, with this particular instance, evidence of 
the positive impact of “Visibility” in the program report 
notation, especially in comparison with the active game 
worksheet notation. The background image is not always easy 
to perceive as a separate component from the set of agents. For 
example, the programmer may have chosen to deploy agents in 
all the program worksheet cells, making it impossible to 
visualize the background image when the program starts to 
run. When used in combination with the program report 
notation, the background image gains visibility, allowing the 
learner to think about its role in the logic or appearance of the 
program, that is, in communicating the essence of the program 
to its users (the players). 

  

Figure 8. Cave behavior - the dot parameter 

Another powerful evidence of the benefits brought about by 
the new “Visibility” of program components and their logic, as 
expressed in the program report, was given by all participants. 
When they look at the program running, they did not perceive 
some rules, different agent depictions or other element about 
the program. But looking at the program report, they could 
learn more about the program composition, its elements and 
so. For example, one of the participants did not perceive an 
important change in agent depiction while looking at the 
running program. The “cave” agent appearance alternated from 

 (empty cave) to  (cave with caveman) and vice-versa 
(see Figure 8). Perception was (perhaps intentionally) low 
because the rules governing it were that 1% of the time the 
agent changes from “empty cave” to “cave with caveman”, but 
the agent always (i. e. 100% of the time) changes “cave with 
caveman” to “empty cave” when it sees it. However, it was 
only when the participant looked at the program report, that he 
realized that the cave actually had different depictions. He had 
not noticed it when running the game. He said: “the cave 

Accepted for publication in the Proceedings of VL/HCC'2012 Innsbruck, Austria, Sep 30 - Oct 4, 2012

Ferreira, de Souza, Salgado, Slaviero, Leitão & Moreira, 2012 6



( )… seems to have a little pair of eyes in it ( )”. This 
caused him to reinterpret the dynamic representations in the 
program play, now expecting to see the caveman quickly 
appear inside the cave on very rare occasions (1% of the time). 
This is a new meaning for the cave space. 

The complete static representation of the program structure 
and codification in the program report also led to 
confrontations with one’s own gaps in the learning process. A 
very strong piece of evidence was found when another 
participant fell upon the visual notation for self-reference ( ) 
in the “cave” behavior rules just mentioned above.  She asked 
herself repeatedly out loud: “What is this dot?”  Part of the 
interest associated with this evidence is that this specific 
participant had made extensive use of this notation when she 
produced her first game in 2010, during the CTA project. She 
also explicitly acknowledged, when the researcher asked her, 
that she had noticed the “dot” in the rules she defined for the 
agents in her 2010 game, but had not known what the dot 
meant. This did not bother her then, but now that she depended 
on the “dot” meaning to make sense of the Fish Tank program, 
she was in trouble. She saw it in the program report that this 
kind of notation was used many times – so it became even 
visually significant for her now. She realized that the dot 
mattered in AgentSheets rules. 

Representing self-reference visually with a dot violated the 
closeness of mapping dimension of CDN. When absent, this 
cognitive dimension of notations had a negative impact on the 
learning process. We should remark that the dynamic 
representation of the complete game at run time did not signify 
self-reference with the same meaning elements as signified in 
the program report. In fact, as discussed in our previous work 
[4] the functional use of self-reference did not always 
correspond to the semantics of self-reference in reality. For 
example, games produced in 2010 extensively denoted that the 
visual interpretation of the game included meanings that were 
absent from the underlying rules governing program execution. 
Once such case was when one student wanted a rabbit to eat 
the carrot (this is what she said in her natural language 
description of the game).  The way she programmed the rules 
was such that this effect was achieved by a rule governing the 
carrot’s behavior (and not the rabbit’s). When the carrot saw 
the rabbit next to it, the carrot deleted itself.  

Evidence of difficulty in interpreting “the dot” in the Fish 
Tank program report may perhaps be associated with 
difficulties in dealing with inverted semantic transitivity of the 
sort just illustrated above. We can conjecture that because the 
“dot” could not be closely mapped to a realistic semantic 
interpretation of the game plot, learners did not achieve 
satisfactory (and correct) understanding of the meaning of this 
notation.  This is an excellent illustration of how the designer’s 
message can be improved if, prior to deciding which visual 
sign will be used to represent self-reference, the designer is 
encouraged to take a more global perspective on what he wants 
to tell to the users. Knowing that self-reference is one of the 
most critical (and productive) concepts in computational 
thinking, AgentSheets designers may now think of using 
additional signs to underline the communication of self-
reference (like textual support, for instance), so that learners 

have a greater chance to grasp critical concepts in computing. 
Once again, we see the merits of combining the three methods 
of analysis, which help us not only in diagnosing cognitive 
issues in visual notations, but evaluating what these issues 
mean in the broadest concept of designer-user communication  
(emission and reception) with a specific purpose in view. 

The most commonly encountered dimensions of CDN 
encountered in our analysis were visibility, consistency and 
closeness of mapping. They shared a common element in the 
contexts where they occurred: they involved relations between 
representations. In this sense, visibility was often the more 
obvious counter-part of hidden dependencies. Likewise, 
consistency could only be established in relation with some 
perceived patterns of notation occurring in multiple instances. 
Finally, the closeness of mapping dimension is per se a 
relational concept.  We interpreted this result as a sign of the 
critical importance of giving AgentSheets users, as 
computational thinking learners, multiple signs of how parts 
relate with each other to compose higher-order significant 
wholes. However, these signs are hard to perceive in the most 
salient patterns of communication used in AgentSheets, 
namely: the gallery of agents (and the interactions the user can 
have with agents); the condition and action palettes with which 
to build behavior rules; the behavior rules window for each 
agent (and the interactions the user can have with rules); and 
the program worksheet (with the interactions made available 
during program design time and program play time). 

The reaction of participants in view of signs in the extended 
version of the program report used in this study strongly 
suggests that this artifact communicated many of the relations 
that participants failed to perceive or understand when using 
other notations. 

IV. CONCLUDING REMARKS 

Findings of the qualitative study reported above have 
practical and methodological contributions.  Practically, the 
study showed that, as anticipated in previous research steps of 
the Scalable Game Design project we are running in Brazil [4], 
AgentSheets offers us a wealth of signs that can be explored 
more systematically in CTA projects. The use of program 
report signs, which constitute a visual static notation to 
communicate the complete program structure and content, 
expanded the participants’ reception of the global design 
message sent through AgentSheets interface signs. This added 
to the AgentSheets designer’s communication effectiveness, 
which is a value in itself. However, because CTA projects 
involve learners and teachers, we asked one of the teachers 
who participates in our project how he thought the program 
report could be used in class. Here are two excerpts of his 
testimony: 

“The program report could make the teaching easier. I 
think about time, because we had a schedule with an end date 
for the project. And all activities should be carried out in such 
a way that we had enough time to communicate content and 
reach our goals. So, I think of situations that required a lot of 
time [in my teaching]. Maybe, with the program report, I 
would have solved problems much faster, especially when I had 
to handle games that already included many agents. At this 

Accepted for publication in the Proceedings of VL/HCC'2012 Innsbruck, Austria, Sep 30 - Oct 4, 2012

Ferreira, de Souza, Salgado, Slaviero, Leitão & Moreira, 2012 7



stage, [using the report to] point at programming errors and 
connections between agents behavior would have been much 
easier.”    

“Orienting the learners without this report was confusing, 
because the student needs to click on one agent, visualize its 
rules, many times doing the same thing many times. In general 
they cannot remember the whole set of rules for every agent. 
So, using the report gives us a broad view of all agents and 
how each one is programmed.” 

This testimony confirms the results of our analysis of 
empirical data collected with participants of our studies. It 
denotes that promoting the program report to a first-class 
notation among other AgentSheets interface notations can 
support new pedagogical strategies in CTA projects. As a 
consequence, in our future work agenda we have included the 
development of a new AgentSheets interface that will 
communicate the presence and the value of complete static 
representations of games and simulations more clearly. 

Methodologically we believe that this study provides a 
good framework for combining interpretive methods of 
analysis that focus on different but related aspects of visual 
programming notations. We used three methods. Semiotic 
Engineering inspection [2] was used to characterize how 
AgentSheets designers communicate their design vision to 
users (which include learners and teachers in CTA projects). 
An important product of this characterization was the 
identification of which notations were used by the designer and 
what communicative purposes they should fulfill in the global 
process of computer-mediated designer-user communication.  
Discourse analysis was used to characterize how the designers’ 
communication was received by different users in situated 
contexts of activity. Finally, the Cognitive Dimensions of 
Notation framework [1] was used to reveal the cognitive 
impact of notational design on learning processes. 
Interestingly, when associating CDN dimensions to discourse 
material reporting how learners received the AgentSheets 
interface message, we found that those referring to relations 
between notational elements or between notations and their 
meaning were the most frequent. This is completely consistent 
with our claim that the program report contains relational signs 
that are critically important to CTA and can be hard to perceive 
in other notations. Moreover, the teacher’s testimony 
mentioned above reinforces the points uncovered by the 
cognitive analysis of static and dynamic notations used in 
AgentSheets. 

To the best of our knowledge, this was the first time this 
combination of methods was used. Therefore, a second item in 
our future work agenda is to use this methodological strategy in 
other studies with visual languages in order to reach a deeper 
understanding of its merits and caveats.  

ACKNOWLEDGMENT 

The authors want to thank the Brazilian funding agencies 
that support this project in different ways: CAPES, CNPq and 
FAPERJ. They would also like to express their gratitude to the 
students and teachers who participated in various experiments 
of the Scalable Game Design Brasil. Last but not least they 

thank Alex Repenning and all the AgentSheets team for their 
constant support, incentive and kindness. 

REFERENCES 
[1] Blackwell, A., Green, T. “Notational systems: The cognitive dimensions 

of notations framework” In J. M. Carroll (Ed.), HCI models, theories 
and frameworks: Toward a multidisciplinary science (pp. 103– 134). San 
Francisco. 2003. 

[2] De Souza, C. S. and Leitão, C. F. “Semiotic engineering methods for 
scientific research in HCI”. Princeton: NJ. Morgan & Claypool. 2009. 

[3] De Souza, C.S. “The Semiotic Engineering of Human–Computer 
Interaction”. Cambridge, MA. The MIT Press. 2004. 

[4] De Souza, C.S.; Garcia, A.C.B.; Slaviero, C.; Pinto, H.; Repenning, A., 
“Semiotic Traces of Computational Thinking Acquisition” In Costabile, 
M.F., Dittrich, Y., Fischer, G. and Piccinno, A. (Eds.) End-User 
Development. Lecture Notes in Computer Science 6654, pp. 155-170. 
Springer Berlin / Heidelberg. 2011. 

[5] Gee, J. P. "An Introduction to Discourse Analysis: Theory and Method". 
London: Routledge. 2005. 

[6] Green, T., Blackwell, A. “Cognitive Dimensions of Information 
Artefacts : a tutorial.” Applied Psychology October. 1998. 

[7] National Research Council Committee for the Workshops on 
Computational Thinking. “Report of a Workshop on The Scope and 
Nature of Computational Thinking”. Online at 
http://www.nap.edu/catalog/12840.html . 2010. 

[8] Ogden, C. K. and Richards, I. A. “The meaning of meaning.” (8th 
edition) New York, NY. Harcourt, Brace & World, Inc. 1989. 

[9] Peirce, C. S. “The Essential Peirce, Selected Philosophical Writings”, 
Volumes 1,2. Edited by Nathan Houser and Christian J. W. Kloesel. 
Bloomington, IN. Indiana University Press 1992-1998. 

[10] Repenning, A. “Making Programming more Conversational.” Visual 
Languages and Human-Centric Computing (VL/HCC), 191-194. Ieee. 
doi:10.1109/VLHCC.2011.6070398, 2011. 

[11] Repenning, A. and Ioannidou, “A. Agent-Based End-User 
Development”. Communications of the ACM. Vol. 47(9) 43-46. 2004. 

[12] Repenning, A., Webb, D., and Ioannidou, “A. Scalable game design and 
the development of a checklist for getting computational thinking into 
public schools” In Proceedings of the 41st ACM technical symposium on 
Computer science education (SIGCSE '10). ACM, New York, 265-269. 
2010. 

Accepted for publication in the Proceedings of VL/HCC'2012 Innsbruck, Austria, Sep 30 - Oct 4, 2012

Ferreira, de Souza, Salgado, Slaviero, Leitão & Moreira, 2012 8




