
Empirical Software Engineering manuscript No.
(will be inserted by the editor)

A Qualitative Human-Centric Evaluation of Flexibility in
Middlewar e Implementations

Renato Maia · Renato Cerqueira ·

Clarisse Sieckenius de Souza·
Tomás Guisasola-Gorham

Received: date / Accepted: date

Abstract Today middleware is much more powerful, more reliable and faster than it used
to be. Nevertheless, for the application developer, the complexity of using middleware plat-
forms has increased accordingly. The volume and variety of application contexts that cur-
rent middleware technologies have to support require that developers be able to anticipate
the widest possible range of execution environments, desired and undesired effects of differ-
ent programming strategies, handling procedures for runtime errors, and so on. This paper
shows how a generic framework designed to evaluate theusability of notations (the Cog-
nitive Dimensions of Notations Framework, or CDN) has been instantiated and used to
analyze the cognitive challenges involved in adapting middleware platforms. This human-
centric perspective allowed us to achieve novel results compared to existing middleware
evaluation research, typically centered around system performance metrics. The focus of
our study is on the process of adapting middleware implementations, rather than in the end
product of this activity. Our main contributions are twofold. First, we describe a qualitative
CDN-based method to analyze the cognitive effort made by programmers while adapting
middleware implementations. And second, we show how two platforms designed for flex-
ibility have been compared, suggesting that certain programming language design features
might be particularly helpful for developers.

Keywords Middleware evaluation· API evaluation· Programmer experience· Qualitative
methods· Cognitive Dimensions of Notations.

1 Introduction

In the last two decades middleware platforms have been continually improved by researchers
and developers working with distributed systems. Today middleware is much more power-
ful, more reliable and faster than it used to be. Nevertheless, for application programmers,

Renato Maia· RenatoCerqueira· Clarisse Sieckenius de Souza· Tomás Guisasola-Gorham
Department of Informatics
Pontifical Catholic University of Rio de Janeiro (PUC-Rio)
22453-900 – Rio de Janeiro – RJ – Brazil
E-mail:{maia,rcerq,clarisse,tgorham}@inf.puc-rio.br

To appear in Empirical Software Engineering Maia, Cerqueira, de Souza, Guisasola-Gorham

ISSN: 1382-3256 (print version) ISSN: 1573-7616 (electronic version) 1

A
ut

ho
rs

' M
an

us
cr

ip
t

the complexity of dealing with middleware platforms has increasedaccordingly. The vol-
ume and variety of application contexts that must be supported require that programmers
be able to anticipate the widest possible range of execution environments, desired and un-
desired effects of different programming strategies, handling procedures for runtime errors,
and so on. Flexible middleware implementations, which usually means platforms that are
easy to adapt or customize for different purposes and contexts, have become a fundamen-
tally required feature in contemporary distributed systems. However, the available tools for
buildingsuch systems have apparently failed to keep in pace.

During the same two decades of distributed systems evolution, the Human-Computer
Interaction (HCI) community has completely transformed the way how end users interact
with computer technologies. This tremendous progress has of course affected programmers,
who now have sophisticated programming environments at their disposal, with graphical
user interfaces, visualization tools, tracing facilities, and many other resources and features
that were not in place before. However, theprogramming conceptssupported by the pro-
gramming languages that they use haven’t evolved as much. Should they have? Could they
have?

As pointed out by Vinoski (2003b), the traditional approach to evaluate middleware
focuses on measuring the system performance and scalability with a specific workload, typ-
ically neglecting aspects such as flexibility or ease of programming. As a result, the answers
to the questions above are not fully known yet. This can be partially explained by the in-
terdisciplinary character of the research needed to find the answers. The distributed systems
and the HCI community must come together to achieve the task, a point raised previously by
Edwards et al (2003), Arnold (2005) and Henning (2009), for example. Yet, another aspect
of the explanation may be the methodology that must be used in this sort of investigation.
Although HCI researchers are by definition familiar with experimental and analytical meth-
ods applied to understand or explainhumanbehavior, the same is not true of researchers
working with distributed systems. In particular, HCI has now extensively embraced the use
of qualitativemethods borrowed mainly from the Social Sciences (Cairns and Cox, 2008;
Lazar et al, 2010), whereas research publications using qualitative methods in Software En-
gineering are still scarce (Dittrich et al, 2007). Qualitative methods are especially important
for our discussion because they exploremeanings, how they evolve and how they affect
human activity (Denzin and Lincoln, 2000).

Our work was motivated by informal observations of the learning process of gradu-
ate and undergraduate students in distributed systems disciplines. We have been using two
different platforms as the base for pedagogical projects where students must implement
additional features to each platform in order to learn specific concepts in the domain of mid-
dleware design and implementation. We were intrigued by the fact that, as a rule, students
did better in one platform than in the other, although both weredesigned for flexibility. They
were, however, implemented in different programming languages, which students should
know in order to do the project. An evident approach to finding out the causes of this dif-
ference in student performance is to investigate, for instance, the existence of a correlation
between a student’s familiarity with one or another programming language and her perfor-
mance with the programming tasks. This approach relies on quantitative methods of analysis
to support or refute a correlation hypothesis in this context. Another approach is to follow a
qualitative method and to make an in-depth analysis of one instance of the phenomenon of
interest, and produce a rich grounded interpretation of what is the case. We chose the latter
alternative, and carried out anexploratoryresearch study (Robson, 2002).

In this research we applied the Cognitive Dimensions of Notations framework (Green,
1989) to analyze and compare the two implementations of middleware platforms we use in

2

To appear in Empirical Software Engineering Maia, Cerqueira, de Souza, Guisasola-Gorham

ISSN: 1382-3256 (print version) ISSN: 1573-7616 (electronic version) 2

A
ut

ho
rs

' M
an

us
cr

ip
t

our teaching. Since CDN, as its name says, requires an instanceof notationfor the analysis,
our first step was to define what constitutes the notation of an implemented middleware plat-
form. Thus we defined ourobject of analysis. Next, we selected typical adaptation tasks that
can be used to decide whether a platform is more or less flexible than the other. The use of
tasks in CDN-based analyses is canonical (Green and Petre, 1996). The third step consisted
of instantiating each one of the 14 cognitive dimensions (Green, 1989; Green and Petre,
1996) in the context of middleware adaptation. The fourth step was a comparison between
both notations, one for each of the platforms under examination. The final step was a com-
prehensive interpretation of findings from previous stages. The value of this approach was to
find certain properties of programming languages and middleware architectures that clearly
distinguish one implementation from the other. This, we think, is a factor that must be con-
sidered independently of whether there is or is not a correlation between students’ perfor-
mance while adapting middleware platforms and their familiarity with the programming
language in which the adaptation must be expressed. Our findings in this study point in the
direction of programming concepts that haven’t yet been implemented in mainstream pro-
gramming languages. Similar concepts have already been proposed by work in component-
oriented programming (Rouvoy and Merle, 2009), architectural descriptions (Aldrich et al,
2002) and gradual typing (Siek and Taha, 2007).

The main contributions of this paper are twofold and can be summarized as: a descrip-
tion of a qualitative CDN-based method to analyze the cognitive effort required to adapt
middleware implementations; and a comparison of two platforms designed for flexibility,
suggesting that certain programming language design features might be particularly helpful
for developers in order to improve flexibility.

In the remainder of this paper we present related work (Section 2), the methodological
perspective we adopted (Section 3), how we instantiated CDN to evaluate the flexibility of
middleware implementations (Section 4), our experimental study using CDN (section 5),
and finally our conclusions, contributions and future work (section 6).

2 Related Work

Arnold (2005) and Henning (2009) warn us about common usability-related misconceptions
in API design that could be avoided. Both authors underline the value of good API design.
Good APIs are easier to learn and easier to use, and because of this, may be effectively
and efficiently used to produce software which, in turn, should have fewer bugs. Thus, good
APIs will be more productive. Their arguments are mainly based on practical experience
and personal reflections. Therefore, they serve as inspiration but yet not as a basis for sci-
entific research, since the authors do not use a systematic method to analyze or produce the
evidence that grounds their opinions.

In this section, we briefly discuss previous research work doing a systematic evaluation
of middleware platforms or programming issues in general, but using two very distinctive
approaches.

2.1 Quantitative Metrics for Evaluation of Middleware Usability

Scientific research in usability of middleware platforms is rare. However, there are studies
that apply traditional software engineering metrics or other quantitative methods to evaluate
aspects of middleware that impact its usability, like modularity, implementation complexity,

3

To appear in Empirical Software Engineering Maia, Cerqueira, de Souza, Guisasola-Gorham

ISSN: 1382-3256 (print version) ISSN: 1573-7616 (electronic version) 3

A
ut

ho
rs

' M
an

us
cr

ip
t

etc. One example of traditional software engineering metricsapplied to middleware evalu-
ation is the study by Cacho et al (2006). The authors analyze Java and AspectJ compliant
implementations of OpenORB — a reflective middleware architecture — using three met-
rics: Concern Diffusion over Components, Concern Diffusion over Operations and Concern
Diffusion over Lines of Code. They claim that the modularity of reflective middleware can
be improved by aspectizing the reflection-specific crosscutting concerns.

Another example of using software engineering metrics to evaluate middleware is pre-
sented by Costa et al (2007). The authors propose a middleware platform for wireless sensor
networks, called TeenyLime, based on a tuple space mechanism. They argue that TeenyLime
yields simpler, cleaner, and more reusable implementations, when compared to mainstream
solutions for wireless sensor networks. This comparison is based on quantitative source level
metrics (explicit application states, lines of code, and the percentage of the application infor-
mation moved from the application component into the tuple space) applied to a reference
application. Similarly, Ramdhany et al (2009) use the degree of code reuse as the basis for
their evaluation of the extent to which a component-based middleware architecture for mo-
bile ad-hoc networks minimizes the time needed to develop and port new ad-hoc routing
protocols. They assume that the number of reused components and lines of code has a direct
impact on the development time and effort.

A rather different approach is inspired by computational complexity of algorithms.
Eden and Mens (2006) follow such analytical approach, trying to measure software flexi-
bility by counting the number of modifications in the code. They also conclude from an
experimental test involving seven participants that their predictions with the formulae are
corroborated.

Another study following the quantitative approach and explicitly focused on distributed
systems is reported by Ranganathan and Campbell (2007). The authors set out to describe
which factors determine the complexity of a distributed computing system from the people’s
point of view. In order to do that, they propose to measure different aspects of a system.
Additionally, they propose a set of guidelines derived from measures that can help reduce
the system’s complexity. Although the authors cover more aspects than traditionally ana-
lyzed with software engineering metrics, their proposal is still grounded in computational
characteristics of the systems, like size, number of steps to doing tasks and probabilistic
interactions between other software through the network.

While the quantitive approach used in these studies can be very suitable for quantifying
specific aspects of software, trying to infer the usability of a programming tool or abstraction
based solely on the final product (the software), without taking into account the program-
ming process that led to it, is not the only strategy, nor necessarily the best one.

2.2 Qualitative Methods to Evaluate Usability of Programming Tools and Abstractions

Regarding API usability in general, there is relatively more research work coming from the
HCI community. Unlike the traditional approach used by the Software Engineering commu-
nity, which is based on source-level metrics, approaches using HCI techniques focus on the
programming activity (the usage) instead of the final product (the implementation).

More than a decade ago, McLellan et al (1998) made experiments with programmers
using an API. Their methodology was based on user observation. Users were shown a con-
trived example with the use of the API and asked to point out what kind of knowledge was
required to produce it. At the end of the activity they were requested to answer a question-
naire where they could talk about their impressions and rationale. The authors produced a

4

To appear in Empirical Software Engineering Maia, Cerqueira, de Souza, Guisasola-Gorham

ISSN: 1382-3256 (print version) ISSN: 1573-7616 (electronic version) 4

A
ut

ho
rs

' M
an

us
cr

ip
t

detailed report with recommendations for changes that was passedon to the team responsi-
ble to the APIs. Another contribution of their work was a good description of the procedures
adopted to test the APIs and examples that could be used as a basis for users’ tasks in obser-
vation sessions.

More recently, Clarke (2001) conducted a series of studies on API usability. Like McLel-
land and co-authors, Clarke also observed programmers using an API and the development
environment, but he used tasks that might be done within a certain period of time. At the
end of programming sessions, the subjects answered a questionnaire proposed by the Cogni-
tive Dimensions of Notations framework (CDN) (Green, 1989; Blackwell and Green, 2003),
a technique developed originally to evaluate programming languages and interactive lan-
guages, but adapted to evaluate application programming interfaces by Clarke and Becker
(2003). An interesting approach of Clarke’s study was the classification of programmers ac-
cording to their behavior (he called these groupspersonas) in order to account for different
programmers’ demands (Clarke, 2004). Clarke concluded with a set of recommendations to
the development team at his company.

Ko et al (2006) tried to understand programmers’ habits and strategies, but this study
focuses more on the immediate improvement in the interface of development environments.
The authors propose a model for patterns of activity in programming, but they assume that
the programmer already knows what to do — that she has a plan — and is just trying to
execute this plan.

Work based on qualitative techniques typically focuses on the identification of rele-
vant (meaningful) aspects of software usability in order to recommend how to improve it,
rather than provide measurements of usability for comparison and quality assurance pur-
poses. Both approaches are valid and complementary, although their distinctions are not
always clear. In the next section, we discuss these two approaches and their suitability for
the goals of our research.

3 The Role of Qualitative and Quantitative Approaches

Qualitative and quantitative methods serve different purposes in research, and disputes about
which one is more scientific than the other have prevented the advancement of disciplines
more than contributed to the validity of research results. Very briefly, qualitative methods
aim atfindingmeanings and variety in specific instances of human activity, whereas quanti-
tative methods aim atmeasuringthe impact and extent of meanings and variety. The proce-
dures involved in qualitative and quantitative methods are radically different, and therefore
require from researchers radically different skills. This may contribute to explain some of the
unproductive dispute: there aren’t many researchers with the time or inclination to become
skillful in both types of methods.

Qualitative methods require the ability to perform systematic interpretation, constant
self-surveillance against biases, consistent identification and separation of different cate-
gories of meanings, identification of direct and indirect expression of invariant meanings
in the variety of discourse, articulation of meanings into novel interpretive schemas, sys-
tematic exploration of opportunities for antithetical evidence, and so on. Quantitative meth-
ods require the ability to formulate testable hypotheses, identify measurable variables that
express the essence of hypotheses, control measurements and isolate cross-dependencies,
understand how measurements translate aspects of the hypotheses, analyze the validity of
measurements, interpret the impact of measures and tested hypotheses in the overall design
of a research project, and so on.

5

To appear in Empirical Software Engineering Maia, Cerqueira, de Souza, Guisasola-Gorham

ISSN: 1382-3256 (print version) ISSN: 1573-7616 (electronic version) 5

A
ut

ho
rs

' M
an

us
cr

ip
t

A separate but related discussion, often confused with the useof qualitative and quanti-
tative methodologies, is about the very purpose of scientific knowledge. Some believe that
the sole purpose of science is topredictevents and properties of elements in reality, whereas
others believe that there are additional purposes for science given that some aspects of re-
ality seem to be inherently difficult to predict consistently. Human creativity, for instance,
a sine qua noncondition for discovering and proposing predictive models of reality, is the
paradigmatic example of unpredictability in nature.

Quantitative methods are the only ones equipped to analyze large amounts of data re-
quired for predicting aspects of reality. Hence, researchers whose purpose is to generate
predictive knowledge use quantitative methodology. However, even in the stream of pre-
dictive knowledge generation there are prime opportunities for contributions coming from
qualitative research. The combination of approaches is often referred to asmixed methods
approach(Creswell, 2009). One such opportunity, which we take in this paper, is to use
qualitative research to shed light on hidden meanings and issues involved in the phenomena
under investigation so as to feed potential hypotheses that can be tested with quantitative
methods later on.

Qualitative research is carried out in very specific contexts, focusing on a small number
of evidence sources, privileging in-depth analysis rather than wide-spread coverage, and re-
quires intensive systematic interpretation of meanings present in the evidence. Systematic
interpretation can be built from the ground (Glaser and Strauss, 1967) or be informed by the-
ories, models and frameworks. In the latter case, a considerable part of the research effort
is devoted to mapping conceptual structures provided by theories, models and frameworks
onto interpretive procedures that can be systematically applied to the analysis of the specific
situation under investigation. Thus, the contribution of this particular form of research is ac-
tually twofold. On the one hand, by making their interpretive procedures explicit, researchers
allow other colleagues to analyze methodological decisions and eventually use them to in-
vestigate other questions. On the other, of course, the results and conclusions achieved in
qualitative research informed by theories, models and frameworks represent new knowledge
that can be further used, inspected and discussed to advance the state of the art in a particular
discipline.

Our own research follows this path. We have used the CDN framework (Green, 1989)
to make an in-depth analysis of two middleware implementations in order to understand the
characteristics that differentiate them in the context of software flexibility. To accomplish
that, we had to reinterpret the CDN framework according to this context, which is rather
different than what it was originally proposed for. The following sections describe both the
CDN framework and our interpretations of its dimensions, and also show the results we
obtained with its application.

4 CDN Instantiation for Evaluating Middleware Flexibility

For some time, we have been investigating the use of the Lua language (Ierusalimschy,
2006) in the development of middleware and other programming tools for distributed appli-
cations (Rodriguez et al, 1996; Ierusalimschy et al, 1998; Cerqueira et al, 1999; Moura et al,
2002; Maia et al, 2004, 2005, 2006). Our main interest has been on the use of Lua’s high-
level constructs and dynamic features to facilitate the development of distributed applica-
tions and middleware systems.

Similar to other programming languages like TCL, JavaScript, Python, and Ruby, Lua is
typically classified as adynamic language. The term dynamic language is not precisely de-

6

To appear in Empirical Software Engineering Maia, Cerqueira, de Souza, Guisasola-Gorham

ISSN: 1382-3256 (print version) ISSN: 1573-7616 (electronic version) 6

A
ut

ho
rs

' M
an

us
cr

ip
t

fined in the literature, thus the classification of programminglanguages as dynamic or static
might vary. However, we consider that four characteristics are fundamental to classifying
a language as adynamic language: the ability to incorporate new portions of sourde code
at runtime (interpretation), type verification at runtime (dynamic typing), support for meta-
programming at runtime (computational reflection), and automatic memory management
(garbage collection).

The most representative example of our work on the use of dynamic languages in dis-
tributed systems, specially in middleware design and implementation, is the development
of OiL (Maia et al, 2006), a middleware platform with support for distributed objects as
the main distributed programming abstraction. Based on the object model and communica-
tion protocols specified in the CORBA standard (OMG, 2008), OiL was written in Lua and
specifically designed to take advantage of Lua’s facilities in order to provide an implemen-
tation that can be easily modified and adapted to different uses.

We have been using OiL together with other open-source middleware implementations,
such as JacORB1 and MICO2, as the base for pedagogical projects where graduate and
undergraduate students are asked to implement additional features to these middleware plat-
forms in order to learn specific concepts in the domain of middleware design and implemen-
tation. Our general observation in different learning situations is that students seem to make
changes and adaptations more easily in OiL than in similar implementations written in other
languages more commonly used for middleware development, like Java or C++. However,
it has never been quite clearwhat made OiL’s implementation easier to be modified than
others, and how or if certain characteristics of Lua effectively contributed to this.

Motivated by this observation, we decided to conduct a study with the goal of identifying
the factors that justify the presumably greater flexibility of OiL. A broader goal of this study
is to bring more light into the understanding of the major factors in the improvement of
middleware flexibility.

The study was carried out using the Cognitive Dimensions of Notations framework,
which is “a set of discussion tools for use by designers and people evaluating designs”
(Blackwell and Green, 2003, pp. 106). This definition highlights the qualitative nature of
CDN. The distinctive product of qualitative research is a reasoned interpretation of a situ-
ated phenomenon. Thus, a set of “discussion tools” is precisely what we need to build the
targeted interpretation. The CDN framework provides a shared vocabulary to name the main
cognitive aspects of notational systems, in order to improve the exchange of experience,
opinions, criticism and suggestions. CDN defines 14 cognitive dimensions that constitute
the basic vocabulary (Blackwell and Green, 2003, pp. 115-118), as summarized and listed
in Figure 1. CDN also defines a method to inspect the system, as described in Section 5.

When we tried to apply the CDN’s inspection method, defined by Blackwell and Green
(2003), we faced two main challenges. First, the CDN framework was originally proposed
to evaluate notational systems for designing artifacts. However, our object of study — a
middleware implementation — is generally seen as an artifact, not a notation. So, we had
to reinterpret a middleware implementation to view it as a notational system, which the
developer can adapt according to his or her needs.

A second challenge is that the 14 cognitive dimensions in CDN (CDs) are conceptual
tools defined to help the designer or evaluator to reason about the system. As such, their
definition is intentionally broad and subject to different interpretations, so that they can
effectively cover a wide range of issues in many different domains. Depending on the inter-

1 http://www.jacorb.org
2 http://www.mico.org

7

To appear in Empirical Software Engineering Maia, Cerqueira, de Souza, Guisasola-Gorham

ISSN: 1382-3256 (print version) ISSN: 1573-7616 (electronic version) 7

A
ut

ho
rs

' M
an

us
cr

ip
t

http://www.jacorb.org
http://www.mico.org

Fig. 1 Cognitive Dimensions originally defined by CDN.
Cognitive Dimension Description

Viscosity resistance to change
Visibility ability to view entities easily

Premature Commitment constraints on the order of doing things
Hidden Dependencies important links between entities are not visible
Role-Expressiveness the purpose of an entity is readily inferred

Error-Proneness the notation invites mistakes and the system gives little protection
Abstraction types and availability of abstraction mechanisms

Secondary Notation extra information in means other than formal syntax
Closeness of Mapping closeness of representation to the domain

Consistency similar semantics are expressed in similar syntactic forms
Diffuseness verbosity of language

Hard Mental Operations high demand on cognitive resources
Provisionality degree of commitment to actions or marks

Progressive Evaluation work-to-date can be checked at any time

pretation of each dimension, CDs can overlap or interfere withone another. For example, if
we consider a programming environment where the user cannot easily see two files at the
same time, the separation of a C++ function declaration and its definition in different files
can be seen either as a case of reduced Visibility or as a case of Hidden Dependency, or
both. Moreover, if Visibility is interpreted as the user’s ability to view whole portions of the
system at once, then the Diffuseness of the language can directly influence the Visibility by
making portions of the system too large to fit in the viewing area.

These two challenges clearly show that we had to adapt the CDN framework for our
particular case. We must define how we are going to systematically interpret each one of the
CDs and adapt the steps of the inspection method according to the purpose of the analysis.
This is what we call the instantiation of the CDN framework. In the next sections, we de-
scribe the instantiation we have used for evaluation of OiL’s flexibility, and that we propose
to be used in analyzing middleware as notation in general.

4.1 Middleware as a Notational System

In accordance with Emmerich et al (2007), middleware today is regarded as a layer between
network operating systems and applications that aims to resolve heterogeneity and distri-
bution issues, providing appropriate abstractions that application programmers use when
building the interacting components of distributed systems. This multi-layered architecture
— applications, middleware, network and operating system infrastructure — has different
kinds of users that have to deal with multiple models and abstractions in order to accomplish
their tasks, as depicted in Figure 2.

We can identify at least three kinds of users of middleware platforms. The first one is
themiddleware developer, who is responsible for:

– defining amiddleware model, which specifies the abstractions that will be provided to
application developers in order to implement their applications;

– designing amiddleware implementation architecture, which represents a possible real-
ization of the middleware model;

– coding this architecture using a specific programming language in order to provide a
specificmiddleware implementation.

8

To appear in Empirical Software Engineering Maia, Cerqueira, de Souza, Guisasola-Gorham

ISSN: 1382-3256 (print version) ISSN: 1573-7616 (electronic version) 8

A
ut

ho
rs

' M
an

us
cr

ip
t

Fig. 2 The multiple users of middleware platforms and their related models.

application
implementation

application model

middleware model

language model

application
developer

middleware
implementation

middleware
implementation architecture

middleware
developer

application
implementation architecture

application
user

application

instance_of

uses

adhere_to

interact_with

interact_with

interact_with

interpret

interpret translate

translate

adhere_to

adhere_to

The resulting middleware implementation will be the programmingplatform of the second
middleware user, theapplication developer, who is responsible for:

– defining anapplication model, which specifies the entities of the application domain and
their relationships;

– designing anapplication implementation architecturebased on the underlying applica-
tion and middleware models;

– coding this architecture using a programming language in order to provide a specific
application implementation.

Finally, the application implementation will be executed by theapplication userin a specific
environment (computer, network, etc.) in order to support some of her/his activities.

Although the scenario depicted in Figure 2 involves multiple actors, models and soft-
ware artifacts, in this paper we will focus on the activities conducted by the middleware
developers and the models they have to tackle in order to accomplish their tasks. As we said
before, we are interested in tasks related to the adaptation of the middleware implementa-
tion.

A determining factor when interpreting a middleware implementation as a notational
system is the programming language used to implement it. Thenotation includes not only
the source code, but also the programming language in which the middleware implemen-
tation is written. The programming language, and the abstract programming model it rep-
resents, must be considered because it potentially influences how the middleware is imple-
mented and organized, and it must be used by the developers to describe (and implement)
their intended additions and modifications.

When developing, adapting or extending a middleware implementation, developers have
to continuously map and correlate concepts and abstractions from different models. First,

9

To appear in Empirical Software Engineering Maia, Cerqueira, de Souza, Guisasola-Gorham

ISSN: 1382-3256 (print version) ISSN: 1573-7616 (electronic version) 9

A
ut

ho
rs

' M
an

us
cr

ip
t

there is the mapping (interpretation) of the middleware model onto a specific implementa-
tion architecture; and both models have to be represented (translated) and manipulated in
the middleware implementation through concepts and abstractions provided by the program-
ming language. These different mappings are also fundamental factors when considering a
middleware implementation as a notational system. We can expect that the closer these mod-
els are, the easier it will be to perform a programming task.

4.2 The Interpretation of the Cognitive Dimensions

An important step in the instantiation of the CDN framework is the interpretation of the
cognitive dimensions. This interpretation consists of defining our understanding of each
dimension in face of the system we want to inspect — middleware implementations — and
the tasks we are considering the user performs — adaptation of the implementation. Below,
we describe our interpretation of the cognitive dimensions we used in our study.

Viscosity the amount of necessary changes in the source code to adapt it for a different
use.When we evaluate the Viscosity we look for the number of elements of the implementa-
tion that must be modified in each change. These elements can be modules, classes, objects,
etc. High Viscosity directly degrades the flexibility of the implementation.

Visibility how easy it is to visualize related portions of the implementation.We do not
consider the navigation facilities between different parts of the implementation as a Visibil-
ity issue because it can be greatly influenced by the tools used by the developer, like text
editors and Integrated Development Environments. High Visibility generally increases the
flexibility because it contributes for the developer to manipulate the implementation.

Diffusenesshow much text or elements are necessary to implement some part of the
system.If one programming language requires longer descriptions to implement compo-
nents or if an implementation imposes the definition of more elements like classes or in-
terfaces then we say it is more diffuse. Diffuseness degrades flexibility because it requires
more effort to write the new code.

Premature Commitmentthe need to assume some aspect of an unknown part of the
implementation while developing another.For example, while writing a component that
uses other components developed by third parties, one must assume some interface these
components provide, even though they are not available yet. This interpretation is a little
different from the one defined originally by CDN, which is more related to the constraints
on the order of actions. Premature Commitments are generally problematic for the flexibility
because they force the developer to think about something without enough information about
it; the conjunction with high Viscosity could increase the problem.

Hidden Dependenciesunexpressed dependencies between different parts of the imple-
mentation. For example, relations determined at runtime are considered Hidden Dependen-
cies, since all static relations can usually be inferred by analyzing the source code. Hidden
Dependencies make the implementation more difficult to understand and manipulate thus
generally degrade flexibility.

10

To appear in Empirical Software Engineering Maia, Cerqueira, de Souza, Guisasola-Gorham

ISSN: 1382-3256 (print version) ISSN: 1573-7616 (electronic version) 10

A
ut

ho
rs

' M
an

us
cr

ip
t

Error-Pronenessthe amount of possible errors that cannot be detected in an early stage
of the development process or are detected inadequately.For example, errors that can
only be detected during the actual use of the middleware are undesirable, because when the
middleware is in use, it cannot be easily fixed. Error-Proneness decreases flexibility because
the developer has to worry about mistakes that cannot be properly identified in advance.

Progressive Evaluationthe ability to test part of the implementation during develop-
ment. We consider that a part of the implementation is complete when it is written and
properly verified, either by testing or by some kind of formal verification. Progressive Eval-
uation lets the developer modify the implementation more easily by doing it incrementally.

Role-Expressivenesswhether the purpose of each element can be inferred by its rep-
resentation.A high Role-Expressiveness implies that is easy to determine the purpose an
element was designed for, and also to find out if an element is a function, an object, a class,
a data structure, or a component. Role-Expressiveness contributes to the flexibility because
it makes the implementation easier to understand.

Abstraction the ability to create new abstractions (Abstraction Tolerant) and the num-
ber of abstractions the developer must understand and use (Abstraction Barrier) or
create (Abstraction Hunger).We see as abstractions both the concepts provided by the pro-
gramming language, like functions or classes, as well as the concepts of the middleware ar-
chitecture like Mico’s invocation adapters. Originally, this CDN dimension comprises three
aspects: abstraction tolerance, abstraction barrier, and abstraction eagerness/hungriness. The
ability to create new abstractions can help the developer manage the complexity of the im-
plementation thus improving its flexibility. However, the necessity of creating or using too
many abstractions can make the implementation very difficult to understand and modify.
Since these aspects may have different impacts on software flexibility, in this work we will
consider them as three distinct cognitive dimensions (Abstraction Tolerant, Abstraction Bar-
rier and Abstraction Hunger).

Closeness of Mappinghow close the implementation is to the conceptual domain.In
this paper we consider two mappings: the suitability of the implementation architecture to
represent the concepts and abstractions defined in the middleware model; and the suitability
of the programming language to implement the underlying architecture and to represent and
manipulate the concepts and abstractions of the middleware model. A higher suitability im-
plies a higher Closeness of Mapping. Closeness of Mapping improves the flexibility because
the implementation is more readily described.

Consistencyhow similar is the implementation of elements with similar roles.For ex-
ample, if some components are implemented as classes and others are implemented as func-
tions, this is a lack of Consistency. Consistency contributes to the flexibility because it makes
the implementation easier to understand.

Hard Mental Operationsoperations that require the developer to think about many el-
ements at the same time.For example, if some information the developer seeks is scattered
across the code as a complex structure, then we consider it a Hard Mental Operation. We
consider structures with many indirections as complex. The abundance of Hard Mental Op-
erations degrades considerably the flexibility, because the implementation becomes more
difficult to manipulate.

11

To appear in Empirical Software Engineering Maia, Cerqueira, de Souza, Guisasola-Gorham

ISSN: 1382-3256 (print version) ISSN: 1573-7616 (electronic version) 11

A
ut

ho
rs

' M
an

us
cr

ip
t

Provisionality the ability to change/adapt parts of the implementation in the future.
This dimension is very close to the notion of flexibility. A high Provisionality can allevi-
ate or even avoid some Premature Commitments. For example, the implementation of data
structures using C++ templates avoids the need to predict the type of data contained in the
structure. In a similar way, dynamic typing allows very generic implementations with dy-
namic languages like Lua. The interpretive character of Lua also represents a very powerful
mechanism to support Provisionality, since it allows the easy incorporation of new code and
redefinition of parts of the implementation at runtime.

Secondary Notationthe support for additional information without formal syntax. It
basically involves the programming language support for comments and metadata. A Sec-
ondary Notation can improve the flexibility by providing extra ways of explanation.

Figure 3 presents a summary of the correlation between the CDs and the flexibility of a
middleware implementation. Since the different aspects of the Abstraction dimension may
have different impacts on software flexibility, these aspects are listed in this figure as three
distinct cognitive dimensions (Abstraction Tolerant, Abstraction Barrier and Abstraction
Hunger). Thus, in the remainder of this paper, we will consider 16 CDs, instead of the 14
original ones.

Fig. 3 The correlation between the CDs and the flexibility of a middleware implementation.
Improve Flexibility Reduce Flexibility
Visibility Viscosity
Progressive Evaluation Diffuseness
Role-Expressiveness Premature Commitments
Abstraction Tolerant Abstraction Hunger
Closeness of Mapping Abstraction Barrier
Provisionality Hidden Dependencies
Consistency Error-Proneness
Secondary Notation Hard Mental Operations

5 CDN Inspection

Oncewe defined our instantiation of the CDN framework, we proceeded to the actual analy-
sis of the middleware implementations using the CDN inspection method, which is defined
by Blackwell and Green (2003) as follows:

1. Get to know the system.
2. Decide what the user will be doing with the notation.
3. Choose some representative tasks.
4. For each step in each task, ask whether the user can choose where to start, how a mistake

will be corrected, what if there are second thoughts, what abstractions are being used,
and so on for the other dimensions. This will generate an observed profile.

5. Compare the observed profile with the ideal profile for that type of activity.

In the following sections, we describe how we applied the CDN inspection method, present-
ing the selected middleware implementations (theobjects of analysis), the selected adap-
tation tasks, the inspection procedure, the inspection results, an overall analysis of these
results, and a triangulation with related work.

12

To appear in Empirical Software Engineering Maia, Cerqueira, de Souza, Guisasola-Gorham

ISSN: 1382-3256 (print version) ISSN: 1573-7616 (electronic version) 12

A
ut

ho
rs

' M
an

us
cr

ip
t

5.1 Objects of Analysis

To perform our study, we chose two middleware implementations that we have been using
in pedagogical and research projects with graduate and undergraduate students: OiL3 and
Mico4. Although the goal of our study is the identification of the factors that justify the
presumably greater flexibility of OiL, Mico served as a reference for comparison.

In accordance with their authors (Maia et al, 2006; Puder et al, 2006), both middleware
systems weredesigned for flexibility, in order to provide a platform to experiment with
middleware implementation techniques. They also implement the same middleware model,
defined by the CORBA standard (OMG, 2008). This model specifies acommon distributed
object model, as the main programming abstraction provided to the application developers.
Additionally, CORBA specifies a set of communication protocols to enable interoperability
between CORBA implementations in different platforms and programming languages.

Despite the fact that OiL and Mico share some design goals, they try to achieve these
goals following very different paths. OiL was written in Lua in order to investigate whether
the features of a dynamic language like Lua can facilitate or not the development of a mid-
dleware system. In this work we consider that a dynamic programming language is charac-
terized by interpretation, dynamic typing, reflection, and autonomic memory management.

OiL’s implementation follows a component-based architecture. The ultimate goal of its
design is to provide flexibility for further extensions and modifications to adapt the middle-
ware to different uses. A minimum set of components implements the core functionality,
like invocation dispatching, remote object proxies, and synchronous or asynchronous in-
vocations. This basic set of components does not implement features related to a specific
RMI protocol. Instead, it only defines receptacles where components that implement differ-
ent RMI protocols can be connected to. The set of components that implements a specific
RMI protocol defines the OiL’sRMI Protocol Layer. Figure 4 illustrates the main compo-
nents that define OiL’s component-based architecture, which can be reconfigured to adapt
its implementation.

Fig. 4 OiL’s component-based architecture.

Operation

Requester

Request

Listener

Server

Channels

channels

Client

Channels

Value

Encoder

codec

Servant

Manager
servants

Proxy

Manager
proxies

requests

Object

Referrer

references

Request

Receiver

requests

Basic

System

sockets

channels

indexer

acceptor

RMI Protocol Layer

3 http://oil.luaforge.net/
4 http://www.mico.org

13

To appear in Empirical Software Engineering Maia, Cerqueira, de Souza, Guisasola-Gorham

ISSN: 1382-3256 (print version) ISSN: 1573-7616 (electronic version) 13

A
ut

ho
rs

' M
an

us
cr

ip
t

http://oil.luaforge.net/
http://www.mico.org

Mico is a CORBA implementation written in C++ and its architectureis based on the
concept of a microkernel, a core component all other components (plugins) are attached
to, as illustrated in Figure 5. These components can be invocation adapters, which receive
invocations from the application or from the network, or object adapters, which dispatch
invocations to local servants or to remote peers through the network. The microkernel gets
requests frominvocation adaptersand dispatch them to a properobject adapter. The mi-
crokernel also uses a scheduler component to manage independent tasks and system events.
The microkernel architecture provides extensibility through the addition of new plugins.

Fig. 5 Mico’s micokernel-based architecture.

 micro-kernel

2

DII
POA

POA
SII

3

Sche
duler

1 IOR

IIOP
Serv.

IIOP
Proxy

1. Scheduler Interface

2. Invocation Adapter Interface

3. Object Adapter Interface

We can summarize the differences between OiL and Mico in two keyfactors:

– the programming language: OiL was written in Lua to take advantage of features that are
common among dynamic programming languages in order to improve flexibility; Mico
was written in C++, which is a more static programming language, frequently used to
implement middleware systems due to its good performance.

– the implementation architecture: OiL follows a (fully) component-based architecture,
while Mico adopts a microkernel architecture.

5.2 Selected Tasks

Since our purpose in this study is to evaluate flexibility, that is, how easy it is for a developer
to change an implementation for different purposes, we selected representative adaptation
tasks that exercice three common types of adaptation: change of an internal aspect of the
middleware implementation; change in the programming interface provided to the applica-
tion; change in the set of functionalities provided by the middleware. The three selected
adaptation tasks are described below.

Switch the underlying RMI (remote method invocation) protocol.This task represents a
change of an internal aspect of the middleware implementation. We considered the imple-
mentation of two significantly different protocols: CORBA’s GIOP and LuDO (Lua Dis-
tributed Objects). We specifically devised LuDO to mimic Lua’s method invocations, in

14

To appear in Empirical Software Engineering Maia, Cerqueira, de Souza, Guisasola-Gorham

ISSN: 1382-3256 (print version) ISSN: 1573-7616 (electronic version) 14

A
ut

ho
rs

' M
an

us
cr

ip
t

similar fashion to other language-specific RMI protocols likeJRMP (Wollrath et al, 1996)
and PYRO5. We believe such a change would have a major impact on the overall implemen-
tation, affecting multiple middleware components.

Add support for asynchronous invocations.This task represents a change in the program-
ming interface provided to the application. In fact, it extends not only the middleware API,
but also the programming model supported by the middleware. Such changes should have
little impact in the middleware core, but should considerably impact the provided API.

Add and remove features like support to issue remote method invocations (client-side), cre-
ation of remotely accessible objects (servants), multithreaded invocation dispatching, invo-
cation interception, and logging.This task represents a change in the set of functionalities
provided by the middleware. This sort of change aims to make the middleware lighter and
possibly more adequate to situations where many functionalities are unnecessary.

5.3 Inspection Procedure

Figure 6 summarizes the main information about the setup of our CDN inspection study.
As stated in Section 4.1, in this paper we focus on middleware developers that have to per-
form some modification in a middleware implementation. We will target an expert developer
that can be either a professional developer adapting the middleware for some particular ap-
plication or an advanced student or researcher doing an experimental modification in the
middleware. In this initial study we have not considered eventual learning issues faced by
novice developers.

The inspection reported in this paper was performed by four analysts: two experts in
middleware implementation and the programming languages used in OiL and Mico (MW
Expert A and B); an expert in Lua programming, with previous knowledge in qualitative
research methods (Lua Expert); and an expert in HCI, linguistics and qualitative research
methods (HCI Expert).

MW Expert A, which is the lead developer of OiL, performed the selected adaptation
tasks in both middleware implementations. During the implementation of these tasks, MW
Expert A tried to identify the necessary actions and possible design decisions a developer
might make, and discussed with MW Expert B and Lua Expert the main challenges he faced.
Then, MW Expert A reported his observations guided by the dimensions proposed by the
CDN framework. This initial report was revised by MW Expert B and Lua Expert in order
to enrich the report with their perspectives. Finally, HCI Expert revised the second report in
order to strengthen the cognitive interpretation. HCI Expert did not have previous knowledge
about middleware models and their implementations.

The combination of multiple analysts with different perspectives and expertise in differ-
ent subjects was very important to refine the inspection report, and worked as a mechanism
for internal triangulation. Since MW Expert A is the lead developer of OiL, this internal tri-
angulation was important to filter any perceived bias in favor of OiL. The following sections
present our consolidated inspection report.

5 http://pyro.sourceforge.net/

15

To appear in Empirical Software Engineering Maia, Cerqueira, de Souza, Guisasola-Gorham

ISSN: 1382-3256 (print version) ISSN: 1573-7616 (electronic version) 15

A
ut

ho
rs

' M
an

us
cr

ip
t

http://pyro.sourceforge.net/

Fig. 6 Summary of the inspection setup.
research question which are the major factors that affect the flexibility of a middleware implemen-

tation? how are they related to each other?

inspected notations OiL and Mico

target group expert middleware developers

observed tasks switch the underlying RMI;
add support for asynchronous invocations;
add and remove middleware features

inspection procedure an expert developer performed the selected tasks and reported hisobservations
in accordance with the CDs;
his report was revised by another middleware expert, a Lua expert,and a HCI
expert specialized in linguistics and qualitative research methods

5.4 Inspection Results

After the proper instantiation of the CDN framework to support our study on middleware
implementation flexibility, we implemented the three tasks previously defined, using the two
middleware platforms. The inspection of these implementations allowed us to draw several
conclusions and observations about the level of flexibility provided by both platforms being
evaluated. As described below, many of our observations are common to all three tasks, but
some cognitive dimensions could be better examined in some tasks than in others.

Viscosity The modularity provided by OiL’s components and the separation of Mico’s im-
plementation in microkernel and attached adaptors simplified some of the modifications,
because it allowed some changes to be introduced simply by adding connections to new
components. For example, the support for a new RMI protocol can be done by new compo-
nents of the RMI Protocol Layer in OiL or as a new pair of invocation adapter and object
adapter in Mico. On the other hand, Mico’s microkernel presents a high viscosity because it
is built as a monolithic component. Thus, changes in functionalities inside the microkernel
usually imply changes in many of the classes that implement it. For example, the object ref-
erence model used in Mico is based on CORBA’s IOR and is implemented by the microker-
nel. In OiL, the functionality of Mico’s microkernel is modularized in separate components
that can be replaced more easily. Moreover, the absence of type declarations due to Lua’s
dynamic typing gives reduced Viscosity to OiL as compared to Mico/C++. However, the
dynamic typing also brings difficulties as will be discussed later.

Visibility While reading the different portions of code to perform the tasks in both imple-
mentations, it became apparent that the main issues related to Visibility in both implementa-
tions are the size of the code and the separation in multiple files. The larger the code is, the
more difficult it is to read it. In that sense, C++ code tends to be larger than Lua code due to
the necessity of type declarations. The size concern is also subject to the Diffuseness dimen-
sion, but Visibility also includes the separation of declaration and definition in different files
— .cpp and.h — which also makes it more difficult to view the whole implementation in
general.

DiffusenessAs stated previously, the need for explicit type declarations significantly con-
tributes to make Mico’s implementation longer than OiL, where such declarations do not

16

To appear in Empirical Software Engineering Maia, Cerqueira, de Souza, Guisasola-Gorham

ISSN: 1382-3256 (print version) ISSN: 1573-7616 (electronic version) 16

A
ut

ho
rs

' M
an

us
cr

ip
t

exist. Lua tables also contribute to keep OiL’s implementationconcise because it makes the
implementation of dynamically typed data structures trivially implemented in a few lines of
code. One example of this is the representation of object references in the implementation
of CORBA’s GIOP. In OiL, these references are represented by a couple of Lua tables, while
in Mico it is necessary to define classes to implement a dynamic data structure to cope with
the dynamic nature of these references. In C++, the implementation of similar structures is
more complex and lengthy, however this is in part a consequence of the low Closeness of
Mapping of the language.

Premature CommitmentsOne important characteristic in Mico’s implementation is the ad-
herence to the CORBA standard, which is a very general model that can accommodate
different features. However, many aspects of the CORBA model that are incorporated by
Mico’s implementation can be inadequate for other components or for future modifications
(e.g.the mandatory support for multi-component profiles in object references, which is not
used anywhere in the current implementation of CORBA’s GIOP). In our interpretation, we
see the strict adoption of the CORBA model throughout Mico’s implementation as an at-
tempt to predict necessities of future modifications. The main problem with such Premature
Commitments is that they can become superfluous or limiting. In the implementation of the
LuDO protocol in Mico, most of these features were superfluous (e.g.location forward) or
inadequate (e.g.stringfied IORs). Since these features are implemented in the micro-kernel,
they cannot be easily removed and the developer adapting the middleware must take them
into consideration most of the time.

OiL avoids the Premature Commitment to the CORBA model by using dynamically
typed structures and objects that are opaque to core components and can be dynamically
extended or inspected by components that implement CORBA specific features. A similar
approach can be adopted in Mico but with a reduction of the effectiveness of C++ static type
checking. Generally, we believe that static typing promotes Premature Commitments in the
implementations, reducing flexibility in favor of a more robust type system.

Hidden DependenciesDuring the task of adding and removing selected features from OiL,
it was useful that OiL’s components do not make explicit reference to other components, so
they can be reused in different contexts. This makes the assembling of different middleware
implementations with distinct features easier (reduces Viscosity). However, it introduces
Hidden Dependencies between components, which reduces readability. Mico makes some of
these dependencies explicit by creating all the required objects inside the component where
they are used. These explicit relations also allow static type verification by the compiler.

In case of Mico, the use of explicit type declarations helps to make some dependencies
more explicit. For example, if a component creates a data structure with a formal type, we
can find other components that manipulate this structure by looking for variables of that
formal type. In Mico, this is was apparent when we tried to remove the support for object
adaptors, which all implement interfaceCORBA::ObjectAdapter, so to identify all parts of
the code that implement or require such component, one can simply search for this interface.
In OiL, such dependencies are not so obvious without relying on code documentation. For
that reason, we believe dynamic typing leads to more Hidden Dependencies.

Likewise, computational reflection can also hide more dependencies, since it allows
runtime manipulation of metadata related to the implementation’s entities. This metadata
manipulation may establish new relationships between the implementation’s entities that
cannot be identified through code inspection. In OiL, this was particularly confusing when

17

To appear in Empirical Software Engineering Maia, Cerqueira, de Souza, Guisasola-Gorham

ISSN: 1382-3256 (print version) ISSN: 1573-7616 (electronic version) 17

A
ut

ho
rs

' M
an

us
cr

ip
t

trying to understand the implementation of object proxies to implementasynchronous invo-
cations, which relies heavily on computation reflection mechanisms of Lua.

Error-PronenessC++’s static typing can identify some errors that, in Lua, can only be iden-
tified at runtime through dynamic typing. This was more evident while trying to assemble
different middleware implementations with distinct features. In Mico, the compiler can eas-
ily identify when a component is removed but some reference to it remains in the code. In
OiL, this kind of error is usually only identified at runtime. Therefore, without an automatic
test suite that exercises the middleware functionalities, the use of a dynamically typed lan-
guage increases the Error-Proneness. On the other hand, errors like incorrect type casting
or memory management errors are not detected by the C++ compiler nor by the runtime
environment6. Therefore, the use of a test suite is also important to detect these errors. In
general, we consider that both implementations have equivalent Error-Proneness.

Progressive EvaluationAn important advantage of dynamic typing and interpretation is the
possibility of testing incomplete or partial implementations. This allows the developer to
evaluate some design decisions earlier and to avoid wasting time following unsuitable ap-
proaches. Such characteristic was very useful while implementing support for different pro-
tocols in OiL, making OiL well suited for exploratory modifications. Since Mico must be
type-corrected to be executed, the experimentation of different implementation approaches
takes more time. In practice, it was necessary to write almost an entire implementation of
LuDO support for Mico before we could run any test. Moreover, the possibility of quickly
and continuously testing the OiL’s implementation were used to proof frequently the imple-
mentation against type errors, thus reducing the impact of the Error-Proneness of dynamic
typing.

Role-ExpressivenessBoth implementations seem to have a low Role-Expressiveness. While
reading code to perform all the three tasks, it was evident that objects, data structures, inter-
faces and components of the architecture are all implemented as classes in Mico and as Lua
tables in OiL, thus looking very similar to each other. We believe both implementations are
equivalent in this dimension.

Abstraction In both Mico and OiL, the developer can create new abstractions, either us-
ing C++ classes or Lua tables and metatables. Moreover, the modifications considered in
this study did not require the use of new abstractions. However, the set of abstractions the
developer must master to perform each selected task varies according to the middleware
implementation.

Abstraction Barrier in Mico consists basically of the abstractions defined by the lan-
guage (e.g.C++ classes), CORBA abstractions that are used in the implementation (e.g.IOR
profiles) and abstractions defined by its architecture (e.g.microkernel and adapters). Both
C++ and CORBA are usually regarded as feature-rich models that define many abstractions.
Lua, on the other hand, is a simpler language with less abstractions than C++, and OiL
tries to avoid many of the complexities of CORBA, which results in a smaller Abstraction
Barrier. However, OiL defines new abstractions that extend Lua with support for classes,
components and architecture templates that the developer must learn prior to understand and

6 Incorrecttype casting can be detected at runtime in C++ by the use of thedynamic cast operator,
however its usage is avoided in Mico’s implementation, probably due to performance and portability issues.

18

To appear in Empirical Software Engineering Maia, Cerqueira, de Souza, Guisasola-Gorham

ISSN: 1382-3256 (print version) ISSN: 1573-7616 (electronic version) 18

A
ut

ho
rs

' M
an

us
cr

ip
t

adapt its implementation. OiL uses Lua’s support for computationalreflection to create dy-
namic proxies for remote objects, thus the modification to support asynchronous invocations
requires that the developer knows and uses Lua’s abstractions related to this functionality
(i.e. computational reflection and coroutines).

Closeness of MappingIn order to discuss this dimension of OiL and Mico, we should take
into account the multiple mappings between different models that a developer has to face
when working on a middleware implementation, as described in Section 4.1. More specif-
ically, we have to analyze how the implementation architecture is represented by the pro-
gramming language abstractions, how the middleware model is represented by the program-
ming language abstractions, and how the implementation architecture interprets the middle-
ware model.

The implementation of Mico and OiL are based on plug-able components that exchange
dynamically typed information through a core component. In that sense, Lua’s dynamic
typing and built-in support for dynamically typed structures (tables) make the implementa-
tion of component interactions easier. In other words, the dynamic typing nature of Lua is
suitable to represent some of the common component interactions in middleware implemen-
tations. However, neither Lua nor C++ has proper mechanisms to represent explicitly many
of their architectural elements, specially the overall architecture.

At first sight, Lua and C++ are suitable to represent the programming abstractions de-
fined by the CORBA (programming) model, since both languages support object-oriented
programming. However, our inspection showed that Mico is more suitable to implement
the CORBA’s GIOP protocol, due to similarities between GIOP’s invocation model and the
standard method call mechanism of C++. GIOP was designed to provide RMI for statically
typed languages and was heavily influenced by C-based RPC systems. On the other hand,
the inspection also showed that OiL is more suitable for modifications that diverge from
CORBA’s model, such as the implementation of the LuDO protocol, which is designed to
mimic Lua’s method invocations over a network.

OiL was also more suitable to represent and implement the support for asynchronous
method invocations, mainly due to the modularization provided by OiL’s architecture and to
some characteristics of Lua, such as dynamic proxies, coroutines and functions as first class
values.

Mico adopts an architecture strongly influenced by CORBA, with a direct mapping of
most elements of CORBA’s model onto the implementation architecture. On the other hand,
OiL follows an architecture based on more generic concepts, which is more suitable to
implement more divergent middleware models, but also introduces extra mapping overhead
when representing elements of CORBA’s model.

Hard Mental OperationsThe implementation of many data structures in Mico are com-
plex, involving multiple indirections implemented as pointers. The management of these
structures generally requires a lot of cognitive resources from the developer — especially
for memory management. This concern with this kind of complexity was present in all the
three tasks we performed in the implementation since we had to understand the original im-
plementation and keep track of the implications of our modifications over the code. In OiL,
that problem is completely absent due to the support for automatic memory management of
Lua. Moreover, Lua tables usually simplifies the implementation of data structures, reducing
the number of indirections when compared to their C++ equivalents.

19

To appear in Empirical Software Engineering Maia, Cerqueira, de Souza, Guisasola-Gorham

ISSN: 1382-3256 (print version) ISSN: 1573-7616 (electronic version) 19

A
ut

ho
rs

' M
an

us
cr

ip
t

Provisionality Luaprovides many mechanisms to support Provisionality. The possibility of
interpreting new code anytime actually allows the modification of almost any part of the im-
plementation at runtime. Lua tables can be seen as generic elements that can be adapted to
many purposes. For example, while object references in OiL are created as tables with some
predefined fields, components can extend this structure with additional fields or operations
according to its needs. The combination of dynamic typing and reflection mechanisms in
Lua enables the implementation ofgeneric proxies, which can easily handle different types
of crosscutting concerns. Moreover, the reflection support helps to define more specific be-
haviors for elements created earlier. For instance, such feature was used to implement the
support for interception of remote method invocations in the task to introduce and remove
features in the middleware.

Provisionality in Mico is restricted to anticipated extensions, and it is mainly supported
by plugins to its microkernel-based architecture and by basic C++ features, such as tem-
plates, polymorphism, late-binding and generic pointers that hold arbitrary data.

Secondary NotationSecondary Notation is supposed to play an important role in any pro-
gramming task, since it provides additional information about the implementation. The ma-
terial provided by Puder et al (2006) was fundamental to understanding the Mico’s imple-
mentation architecture, since high-level design choices like this one are not properly repre-
sented in the source code. With regard to OiL, in our study we could not observe any specific
issue related to the Secondary Notation dimension, because the developer that performed the
analyzed tasks is the lead developer of OiL.

ConsistencyIn our study, we could not observe any specific issue related to the Consistency
dimension.

Figure 7 presents a summary of the inspection results. In this figure, the cognitive dimen-
sions are organized in two groups: The first one (left side) has the dimensions that contribute
to improve flexibility of middleware implementations; The second one (right side) has the
dimensions that contribute to reduce flexibility. We indicate how much each middleware
implementation has contributed to strengthen or weaken each particular dimension. Consid-
ering our goal of improving flexibility, more bullets (•symbol) and less circles (◦symbol) in
the left side implies more flexibility, while more bullets and less circles in the right side im-
plies less flexibility. The results summarized in the Figure 7 support our original observation
that OiL is more flexible than Mico.

Fig. 7 Summary of the flexibility evaluation in accordance with CDN.
Improve Flexibility OiL Mico Reduce Flexibility OiL Mico
Visibility • ◦ Viscosity ◦◦ ••

Progressive Evaluation •• ◦ Diffuseness ◦◦ ••

Role-Expressiveness ◦ ◦ Premature Commitments ◦◦ ••

Abstraction Tolerant • • Abstraction Hunger NO NO
Closeness of Mapping • • Abstraction Barrier • ◦

Provisionality •• ◦◦ Hidden Dependencies •• ◦◦

Consistency NO NO Error-Proneness • •

Secondary Notation NO • Hard Mental Operations ◦◦ ••

NO = not observed
• = strengthens the dimension
◦ = weakens the dimension

20

To appear in Empirical Software Engineering Maia, Cerqueira, de Souza, Guisasola-Gorham

ISSN: 1382-3256 (print version) ISSN: 1573-7616 (electronic version) 20

A
ut

ho
rs

' M
an

us
cr

ip
t

5.5 Conclusion of the Analysis

The objective of our inspection was not only to identify the characteristics of each mid-
dleware platform under consideration that influence their flexibility from a human-centric
perpective, but also to provide means to explain their cognitive impact. In the previous sec-
tion, we identified many characteristics of both middleware platforms that can increase the
cognitive overload faced by a developer when adapting middleware. This cognitive overload
is especially critical when the developer wants to quickly try different design and implemen-
tation alternatives (exploratory programming).

In our interpretation of the cognitive dimensions, we identified a relationship between
them and the linguistic aspects of the notations under analysis. For instance, Visibility is
directly related to syntactical aspects of the notations, while Abstraction Barrier is related to
semantic aspects. Provisionality, in its turn, has to do with use situation, which we classify
as a pragmatic issue. Figure 8 reorganizes the results of our inspection in accordance with
the relation between the cognitive dimensions and the linguistic aspects (syntax, semantics
and pragmatics). In this figure, having more bullets implies more contribution to strengthen
flexibility and having more circles implies more contribution to reduce flexibility.

Fig. 8 Summary of the flexibility evaluation organized by linguistic aspects.
Syntax-related Dimensions OiL Mico
Visibility • ◦

Viscosity •• ◦◦

Diffuseness •• ◦◦

Premature Commitments •• ◦◦

Hidden Dependencies ◦◦ ••

Consistency NO NO
Semantics-related Dimensions
Abstraction Tolerant • •

Abstraction Hunger NO NO
Abstraction Barrier ◦ •

Pragmatics-related Dimensions
Role-Expressiveness ◦ ◦

Error-Proneness ◦ ◦

Progressive Evaluation •• ◦

Hard Mental Operations •• ◦◦

Closeness of Mapping • •

Provisionality •• ◦◦

Secondary Notation NO •

NO = not observed
• = strengthens flexibility
◦ = weakens flexibility

We can observe in Figure 8 that OiL outperforms Mico in syntax- and pragmatics-related
dimensions, while Mico has a slightly better result in semantics-related dimensions. Consid-
ering only syntax-related dimensions, OiL strengthens flexibility in all dimensions, except
in Hidden Dependencies. The poor result in this dimension encourages further investigation,
in order to explore possibilities for improvement.

The best OiL’s results among the pragmatics-related dimensions were with Provision-
ality, Progressive Evaluation and Hard Mental Operations. These dimensions, together with
a low Viscosity, are especially important to exploratory programming. Such dimensions are
important to allow implementations to be modified quickly and with less effort, so different

21

To appear in Empirical Software Engineering Maia, Cerqueira, de Souza, Guisasola-Gorham

ISSN: 1382-3256 (print version) ISSN: 1573-7616 (electronic version) 21

A
ut

ho
rs

' M
an

us
cr

ip
t

approaches can be easily evaluated. Moreover, the possibilityof quickly and continuously
testing the middleware implementation may reduce, or even counterbalance, the high Error-
Proneness of dynamic typing. The high degree of Provisionality is also very meaningful,
since our interpretation of this dimension places it very close to the notion of flexibility.

As discussed in Section 5.4, although OiL seems to have drawn with Mico in the Close-
ness of Mapping dimension, they performed very differently when we consider the multiple
mappings that the developer has to deal with. Their performance in this dimension also
varies a lot according to the nature of the adaptation task. OiL aims to provide an architec-
ture that enables the implementation of more divergent middleware models. Mico adopts an
architecture strongly influenced by CORBA, whose main points of extensibility are directly
related to the points of variability defined in the CORBA’s model (protocols, concurrency
models, etc.). Mico will probably perform better if the adaption task fits CORBA’s model,
otherwise OiL should present better results.

Our CDN inspection also casts light on the reasons behind such observations, iden-
tifying how each OiL’s characteristic influences its flexibility. Considering our inspection,
OiL’s most distinguishing characteristics in contrast to Mico are the component-based archi-
tecture, lack of type declarations, dynamic typing, computational reflection, interpretation,
automatic memory management, and the use of Lua tables as a unified data structure. Ex-
cepted for the architectural style adopted by OiL, all the other characteristics are related
to the programming language used to implement it. The majority of these language-related
characteristics are common to other dynamic languages.

Figure 9 presents the influence of OiL’s features on each cognitive dimension. The sec-
ond and third columns indicate OiL’s features that influence positive and negatively its flex-
ibility, respectively. Each feature is represented by an acronym, and the features related to
dynamic languages are in boldface. This figure allows us to draw many conclusions.

Fig. 9 The influence of OiL’s features on its flexibility.
Syntax-related Dimensions strengthen flexibility weaken flexibility
Visibility LS,DT
Viscosity SC,DT
Diffuseness LS,DT,LT
Premature Commitments SC,DT
Hidden Dependencies SC,DT,CR
Semantics-related Dimensions
Abstraction Tolerant CR,LT
Abstraction Barrier SC,CR
Pragmatics-related Dimensions
Role-Expressiveness LT
Error-Proneness DT
Progressive Evaluation DT,CI
Hard Mental Operations MM,LT
Closeness of Mapping DT,LT,OP,CO,FF,SC DT,SC
Provisionality CI ,CR,DT,LT,SC

Legend:

CI codeinterpretation
DT dynamic typing
CR computational reflection
MM automatic memory management
OP object-oriented programming

SC software components
LS Lua syntax
LT Lua tables
CO coroutines
FF functions as first-class values

22

To appear in Empirical Software Engineering Maia, Cerqueira, de Souza, Guisasola-Gorham

ISSN: 1382-3256 (print version) ISSN: 1573-7616 (electronic version) 22

A
ut

ho
rs

' M
an

us
cr

ip
t

First, the component-based implementation architecture improves flexibility as a means
of reducing Viscosity and Premature Commitments, and increasing Provisionality and the
Closeness of Mapping between the implementation architecture and the middleware model.
However, such architecture introduces some Hidden Dependencies, which are harder to find
due to the lack of type declarations.

The lack of a proper support for components in the programming language also repre-
sents an Abstraction Barrier and makes the mapping between the implementation architec-
ture and the programming language more difficult. In fact, this is one of the most frequent
complains reported by students that modified OiL’s implementation.

Considering the four characteristics derived from the dynamic nature of Lua, we can
observe that dynamic typing has a strong positive influence on syntax-related dimensions.
However, dynamic typing and computational reflection, together with the component-based
architecture, are responsible for a high degree of Hidden Dependencies, which was the worst
result of OiL when compared to Mico in all dimensions.

While dynamic typing has no influence on semantics-related dimensions, it plays an
important role from a pragmatic perspective, supporting Progressive Evaluation and Pro-
visionality, and simplifying the representation of some common component interactions in
middleware implementations (Closeness of Mapping between the implementation architec-
ture and the programming language). Dynamic typing also provides, together with code
interpretation, a good support for Progressive Evaluation. As described in Section 5.4, we
used this feature to test frequently OiL’s implementation against type errors. Further quan-
titative studies can be carried out in order to assess the impact of dynamic typing on the
overall implementation process, considering its contributions to Progressive Evaluation and
Error-Proneness.

Computational reflection is a major adaptation mechanism, allowing the runtime in-
spection and modification of the middleware implementation. However, it introduces some
Hidden Dependencies and can represent a major Abstraction Barrier. The use of reflective
mechanisms should be considered carefully, to avoid a high increase in the cognitive over-
load faced by a developer.

The high degree of Provisionality can be easily explained by the amount of OiL’s fea-
tures that contribute to this dimension. Again, the dynamic features of Lua are the main
determinants of this good result.

Since the Closeness of Mapping dimension in our CDN instantiation has to deal with
multiple mappings, some of OiL’s features appear in both columns. As discussed in Sec-
tion 5.4, features like dynamic typing and software components can help to close the gap
between some models, but they can also increase the gap in other cases. For instance, the
use of a component-based architecture can help to represent the middleware model, but it
can make the translation of the implementation architecture in terms of the programming
language’s abstractions more difficult.

With this analysis, we achieved our original goal of identifying the factors that justify
a presumably greater flexibility of OiL. The implementation architecture and the program-
ming language used to implement the middleware are major determinants of high flexibility.
The dynamic features of Lua play a very important role, providing means to simplify not
only the syntactical manipulation of the notation, but also the execution of common pro-
gramming tasks, at least in the domain of middleware implementation.

But there is room for improvement. Our observations encourage the investigation of
better programming language abstractions and constructions to support component-based
programming. For instance, Eichberg et al (2005) and Rouvoy and Merle (2009) tried to
provide better support for component-based programming throughannotationsin the source

23

To appear in Empirical Software Engineering Maia, Cerqueira, de Souza, Guisasola-Gorham

ISSN: 1382-3256 (print version) ISSN: 1573-7616 (electronic version) 23

A
ut

ho
rs

' M
an

us
cr

ip
t

code (a Secondary Notation). The evaluation of this approach withour CDN instantiation is
an interesting direction for future work.

The lack of mechanisms in the programming language to represent and manipulate the
implementation architecture in a proper way can also hinder adaptation tasks, by introducing
some Hidden Dependencies. Approaches like the one proposed by Aldrich et al (2002) can
be applied in order to solve or mitigate this problem.

However, all these alternative approaches are based on adding more type information to
the code, what could be antithetical to the idea of dynamic typing as a major determinant of
flexibility. In fact, although dynamic typing has been shown to be very effective to improve
flexibility in many dimensions, it also increases the cognitive overload in other dimensions.
Siek and Taha (2007) propose a promising approach, calledgradual typing, to tackle this
apparent contradiction. Gradual typing allows parts of a program to be dynamically typed
and other parts to be statically typed.

5.6 Triangulation with Related Work

Traditionally, middleware implementations have tried to achieve flexibility either through
architectures with a rich set of features provided by the middleware (e.g. OMG, 2008)
or through architectural mechanisms that allow middleware adaptation and extension (e.g.
Kon et al, 2002; Ramdhany et al, 2009). The results of our CDN inspection corroborate the
importance of the implementation architecture to the middleware’s flexibility.

The results we observed in this work are also consistent with results of other researchers
working on flexibility of middleware implementations. For example, some related work
(Cacho et al, 2006; Costa et al, 2007; Ramdhany et al, 2009), which applies software en-
gineering metrics to evaluate middleware flexibility, relies on the assumption that character-
istics like low coupling, high conciseness and cohesion, and good separation of concerns,
contribute to increased flexibility. This assumption is generally compatible with the instan-
tiation of the CDN framework used in this work and with some conclusions of our analysis.

In particular, low coupling can contribute to minimizing the likeliness of Hidden Depen-
dencies and reduce Viscosity — changes in one part of the implementation are less likely
to propagate or affect others. High conciseness is directly related to reduced Diffuseness,
which is also a CDN dimension that reduces flexibility in our view. Finally, high cohesion
and good separation of concerns is likely to reduce Hard Mental Operations, since the pro-
grammer does not have to keep many concerns or functionalities in mind when learning or
modifying the code. In this view, we consider our work complementary in the sense that the
CDN embraces additional aspects that cannot be easily measured quantitatively, but may
have great influence on the flexibility of the implementation. Moreover, qualitative analy-
sis can also help to improve the understanding of how these quantitative metrics must be
interpreted.

Our work is also complementary in the sense that it considers not only the impact of
the middleware implementation architecture, but also the influence of the programming lan-
guage. In accordance with Vinoski (2003a), most of the middleware complexity resides pre-
cisely in the mapping between the middleware’s underlying model and the abstractions of a
particular programming language. This is consistent with our interpretation of the Closeness
of Mapping dimension.

Our observations about the role of the dynamic characteristics of Lua are also consonant
with related work on dynamic languages. For example, Nierstrasz et al (2005) claim that
most languages are static in the sense that they assume the world is consistent, but in reality

24

To appear in Empirical Software Engineering Maia, Cerqueira, de Souza, Guisasola-Gorham

ISSN: 1382-3256 (print version) ISSN: 1573-7616 (electronic version) 24

A
ut

ho
rs

' M
an

us
cr

ip
t

most complex systems cannot be consistent, and they later suggestthat dynamic languages
can be a good solution to this problem. This line of reasoning is consistent with our claim
that dynamic languages provide better Progressive Evaluation because they allow the system
to run even when it is not entirely correct or consistent. Mechanisms for Provisionality can
be also very helpful in such situations.

They also claim that static typing “is the enemy of change”. This is consistent with
our interpretation that static typing contributes to more Premature Commitments and higher
Viscosity. Nierstrasz et al also highlight the fact that, although computational reflection is
useful in many situations, it also leads to less stability. This is also consistent with our
observation that the use of computational reflection in OiL introduces Hidden Dependencies,
which may lead eventually to higher Error Proneness.

Hirschi (2007) reports a low Error Proneness in Lua, due to more informative error
messages, which is consistent with our claim that Lua’s dynamic typing catches errors
at runtime that are never identified by C++’s static typing. He also recognizes the Lua’s
meta-mechanisms as powerful Abstraction Tolerance mechanisms that allow implementa-
tion of classes and inheritance in Lua, which does not provide direct support for such object-
oriented concepts. Hirschi also reports, based on his experience using Lua, the advantages of
Progressive Evaluation by stating he could set up tests faster and identify bugs sooner than
when using C or C++. Another advantage of Lua reported by Hirschi is the Provisionality
provided by the language’s dynamic nature, that ensured he “could always implement new
insights at a moment’s notice”. Finally, he also suggests that most of Lua advantages may
not be exclusive of this language, but shared by most dynamic languages. This is consistent
with our correlation between CDN dimensions and dynamic language features.

Our results are consistent with the findings of Prechelt (2003) too. The author evaluates
the use of four scripting languages (Perl, Python, Rexx and Tcl) and three more conventional
programming languages (C, C++ and Java). In his study, Prechelt uses a quantitative analysis
based on 80 implementations of the same program. Prechelt’s findings indicate that the pro-
grams in scripting languages are very much smaller than the other ones. Examining the code
of these programs, he identifies three possible reasons: the lack of type declarations (simi-
larly to our analysis of the Diffuseness dimension); more powerful constructs for common
operations like the hashing algorithm of associative arrays — a common feature in scripting
languages — that were extensively used in programs written in scripting languages. We can
interpret the last two reasons as a higher expressiveness of the scripting languages evaluated
and a closer mapping between the proposed program and these languages, which is similar
to our findings about the suitability of OiL’s features to implement the modifications defined
in our study.

Moreover, Prechelt’s findings also indicate that programs in scripting languages are writ-
ten in less time than in other languages. This is consistent with our idea that dynamic typing
promotes Progressive Evaluation and helps identify inadequate approaches earlier and reach
a satisfactory solution faster. Although the consistency between our results and Prechelt’s
findings does not assure the results, the absence of divergencies is more important because
it indicates that there are no obvious misconceptions in our study. This is a very illustrative
example of the synergism that can be achieved when qualitative and quantitative research
methods are combined.

25

To appear in Empirical Software Engineering Maia, Cerqueira, de Souza, Guisasola-Gorham

ISSN: 1382-3256 (print version) ISSN: 1573-7616 (electronic version) 25

A
ut

ho
rs

' M
an

us
cr

ip
t

6 Final Remarks and Future Work

Traditionally, the evaluation of middleware and other programming infrastructures focuses
mainly on aspects like performance or scalability, and issues like how easy it is for the
programmer to use or comprehend middleware are left behind, even though these are recog-
nized as important concerns in middleware design (Vinoski, 2003b). We believe one reason
for this is the difficulty of using quantitative approaches, which are traditionally used in
middleware research, to evaluate usability. Qualitative methods on the other hand stand out
as a promising and complementary alternative, since they have been successfully used by
the HCI community to evaluate the user experience in other scenarios.

In this paper, we presented our first experience in investigating the use of qualitative re-
search methods to evaluate middleware. We based our investigation on the CDN framework
due to its broad applicability, ranging from evaluation of visual programming languages to
graphical interfaces and software in general. However, the generality of the CDN frame-
work also makes its application very difficult for the novice. In our case, we had to define
a specific instantiation of CDN for evaluation of middleware flexibility. Such an instantia-
tion consists of more specific interpretations of the CDN framework in the target evaluation
context. These interpretations include: a view of middleware as a cognitive artifact being
manipulated by the programmer; more precise definitions of the cognitive dimensions ad-
justed to this scenario; and a systematic method for evaluation based on specific cases of
middleware modification. A proper instantiation of CDN requires a deep understanding of
the CDN framework and a careful analysis of the objectives of the study.

The main contributions of this work are twofold. First, we described a qualitative CDN-
based method to analyze the cognitive effort made by programmers while adapting middle-
ware implementations. And second, we reported on the inspection of two platforms designed
for flexibility, suggesting that certain programming language design features might be par-
ticularly helpful for developers in order to improve flexibility.

Although there is no guarantee that our instantiation of CDN is the most adequate for
evaluation of middleware flexibility, the results we obtained were very interesting, pointing
out specific characteristics of Lua or of OiL’s design that influence the flexibility of the im-
plementation. For example, Lua features like interpretation, dynamic typing and reflection
are useful for exploratory changes. Moreover, automatic memory management (garbage col-
lection) simplifies changes in general. The organization of OiL’s implementation as modular
components makes the implementation easier to modify yet more difficult to understand and
investigate. In summary, the dynamic language features of Lua generally contribute to OiL’s
flexibility, and the use of components contributes to modularizing its implementation.

Despite the fact that other authors have already promoted dynamic languages as an in-
strument to improve flexibility (Ousterhout, 1998; Nierstrasz et al, 2005; Hirschi, 2007),
to the best of our knowledge no previous work has established precisely the relationships
between the features of dynamic languages and the flexibility these languages provide.

On the other hand, the comparison with Mico can be deceiving in some aspects. First
because C++ is not the ideal candidate to praise for the benefits of statically typed languages.
Other languages may play a better role in offering important features that Lua lacks and
would be useful to improve the flexibility of a middleware implementation. Nevertheless,
the comparison between OiL and Mico is still pertinent since C++ is often considered the
language of choice for implementing high quality middleware. The results of our analysis
can also be seen as identification of the particular characteristics of the C++ language and
C++ coding techniques that affect the implementation’s flexibility. For example, the lack of
support for automatic memory management and dynamically typed structures compromises

26

To appear in Empirical Software Engineering Maia, Cerqueira, de Souza, Guisasola-Gorham

ISSN: 1382-3256 (print version) ISSN: 1573-7616 (electronic version) 26

A
ut

ho
rs

' M
an

us
cr

ip
t

the flexibility of Mico’s implementation by making it more difficultto understand, change
and introduce independent developed components.

As a typical qualitative study, this work was carried out in a very specific context, focus-
ing on a small number of evidence sources, privileging in-depth analysis rather than wide-
spread coverage. The conclusions drawn from our CDN inspection are restricted to a context
defined by the two middleware implementations, the selected tasks, and the backgrounds of
the four analysts. These conclusions cannot be directly generalized to other context without
further qualitative and quantitative studies. As said before, there is no guarantee that our
instantiation of CDN is the most adequate for evaluation of middleware flexibility. The ap-
plication of this instantiation to other programming tasks and to other middleware platforms
would be very important to validate and improve our interpretation of the CDN dimensions.
Although we have already performed triangulation with related work and internal triangula-
tion, through the combination of multiple analysts with different perspectives and expertise
in different subjects, further triangulation is still needed in order to control bias and to test
(or maximize) the validity and reliability of our study.

To the best of our knowledge, this work is a first attempt to define an evaluation method-
ology for programability of middleware platforms. It needs further improvement and valida-
tion, however we believe it supports our argument that the use of qualitative methods can be
regarded as a valuable approach to understand the way developers interact with middleware
platforms and other programming tools. This understanding is an important step to guide
future middleware research that takes into account the programmer’s perspective. We can
envision many directions in which this work can evolve, as listed below:

– Perform similar studies to evaluate the flexibility of other middleware platforms, such as
OpenCom (Coulson et al, 2002). OpenCom is a reflective middleware architecture also
designed to provide a high degree of flexibility, and has implementations in different
languages, such as Java and C++. Since reflective middleware provides an API (or a
meta-object protocol) that allows the inspection and modification of the middleware at
runtime, a reflective middleware platform would allow studies where the application de-
veloper performs the adaptation tasks at runtime. This sort of scenario would enable the
investigation of other user perspectives and other relationships between abstract models
and their representations.

– Repeat the instantiation process to evaluate other programability aspects, such as the
ease of developing applications using middleware. These studies can investigate is-
sues related to the distributed runtime environment, concurrency models, and the multi-
language support provided by some middleware platforms.

– Perform similar studies to investigate whether the enhancement of an object-oriented
language with component-oriented programming abstractions and architecture descrip-
tions as a first class entity can improve the programmer experience when implementing
component-based architectures.

– Perform similar studies to investigate whether gradual typing (Siek and Taha, 2007) ef-
fectively combines the advantages of static and dynamic typing in order to provide more
flexible programming platforms.

– Extend CDN with new dimensions to support deeper analysis of programming abstrac-
tions and platforms. In particular, we are interested in the identification of possible epis-
temic dimensions that deal with the ability of the notation to make the user think more
about the design being made. We are also interested in investigating whether the corre-
lation we identified in this work between the CDs and the linguistic aspects appears in
other CDN instantiations.

27

To appear in Empirical Software Engineering Maia, Cerqueira, de Souza, Guisasola-Gorham

ISSN: 1382-3256 (print version) ISSN: 1573-7616 (electronic version) 27

A
ut

ho
rs

' M
an

us
cr

ip
t

– Perform experiments based on user (programmer) observation. Such experiments should
provide new insights into the inspections already accomplished.

– Investigate how qualitative and quantitative methods can be combined in a symbiotic
manner to provide a better understanding of how to design programming abstractions
and platforms.

Acknowledgements This work was partially supported by grants from PETROBRAS and CNPq. Clarisse
de Souza is partially supported by grants from FAPERJ (E-26/102.400/2009) and CNPq (308964/2006-3).

References

Aldrich J, Chambers C, Notkin D (2002) Architectural reasoning in ArchJava. In: Magnus-
son B (ed) Proceedings of ECOOP’02, Springer Berlin / Heidelberg, Lecture Notes in
Computer Science, vol 2374, pp 185–193

Arnold K (2005) Programmers are people, too. ACM Queue 3(5):54–59
Blackwell A, Green TRG (2003) Notational systems — the cognitive dimensions of no-

tations framework. In: HCI Models, Theories, and Frameworks : Toward a Multidisci-
plinary Science (Morgan Kaufmann Series in Interactive Technologies), Morgan Kauf-
mann, chap 5, pp 103–133

Cacho N, Batista T, Garcia A, Sant’Anna C, Blair G (2006) Improving modularity of reflec-
tive middleware with aspect-oriented programming. In: SEM ’06: Proceedings of the 6th
international workshop on Software engineering and middleware, ACM, New York, NY,
USA, pp 31–38, DOI http://doi.acm.org/10.1145/1210525.1210534

Cairns P, Cox AL (2008) Research Methods for Human-Computer Interaction. Cambridge
University Press, New York, NY, USA

Cerqueira R, Cassino C, Ierusalimschy R (1999) Dynamic component gluing across differ-
ent componentware systems. In: Tari Z, Meersman R, Soley R, Bukhres O (eds) Proceed-
ings of DOA’99, IEEE Computer Society, Washington, USA, pp 362–373

Clarke S (2001) Evaluating a new programming language. In: Kadoda G (ed) 13th Annual
Workshop of the Psychology of Programming Interest Group, pp 275–289

Clarke S (2004) Measuring API Usability. Dr Dobb’s Journal pp S6–S9, URL
http://www.ddj.com/windows/184405654

Clarke S, Becker C (2003) Using the Cognitive Dimensions Framework to evaluate the
usability of a class library. In: Petre M, Budgen D (eds) 15th Annual Workshop of the
Psychology of Programming Interest Group, pp 359–366

Costa P, Mottola L, Murphy AL, Picco GP (2007) Programming wireless sensor networks
with the teenylime middleware. In: Cerqueira R, Campbell RH (eds) Middleware 2007,
ACM/IFIP/USENIX 8th International Middleware Conference, Springer, Newport Beach,
CA, USA, Lecture Notes in Computer Science, vol 4834, pp 429–449

Coulson G, Blair G, Clarke M, Parlavantzas N (2002) The Design of a Configurable and
Reconfigurable Middleware Platform. Distributed Computing 15(2):109–126, DOI http:
//dx.doi.org/10.1007/s004460100064

Creswell JW (2009) Research Design: Qualitative, Quantitative, and Mixed Methods Ap-
proaches. Sage Publications

Denzin NK, Lincoln YS (eds) (2000) Handbook of Qualitative Research, 2nd edn. Sage
Publications

28

To appear in Empirical Software Engineering Maia, Cerqueira, de Souza, Guisasola-Gorham

ISSN: 1382-3256 (print version) ISSN: 1573-7616 (electronic version) 28

A
ut

ho
rs

' M
an

us
cr

ip
t

http://www.ddj.com/windows/184405654

Dittrich Y, John M, Singer J, Tessem B (2007) Editorial: For thespecial issue on qualita-
tive software engineering research. Information and Software Technology 49(6):531–539,
DOI http://dx.doi.org/10.1016/j.infsof.2007.02.009

Eden AH, Mens T (2006) Measuring software flexibility. Software, IEE Proceedings
153(3):113–125, DOI 10.1049/ip-sen:20050045

Edwards WK, Bellotti V, Dey AK, Newman MW (2003) Stuck in the middle: The challenges
of user-centered design and evaluation for infrastructure. In: CHI 2003: Proceedings of
the ACM Conference on Human Factors in Computing Systems, ACM, New York, NY,
USA, pp 297–304, DOI http://doi.acm.org/10.1145/642611.642664

Eichberg M, Scḧafer T, Mezini M (2005) Using annotations to check structural properties
of classes. In: Cerioli M (ed) FASE, Springer, Lecture Notes in Computer Science, vol
3442, pp 237–252

Emmerich W, Aoyama M, Sventek J (2007) The impact of research on middleware technol-
ogy. SIGOPS Operating Systems Review 41(1):89–112, DOI http://doi.acm.org/10.1145/
1228291.1228310

Glaser B, Strauss A (1967) The discovery of grounded theory: Strategies of Qualitative
Research. Wiedenfeld and Nicholdon, London, UK

Green TRG (1989) Cognitive dimensions of notations. In: Sutcliffe A, Macaulay L (eds)
People and Computers V, Cambridge University Press, Cambridge, United Kingdom, pp
443–460

Green TRG, Petre M (1996) Usability Analysis of Visual Programming Environments: a
‘cognitive dimensions’ framework. Journal of Visual Languages and Computing 7:131–
174

Henning M (2009) API design matters. Communications of ACM 52(5):46–56, DOI http:
//doi.acm.org/10.1145/1506409.1506424

Hirschi A (2007) Traveling light, the Lua way. IEEE Software 24(5):31–38
Ierusalimschy R (2006) Programming in Lua, second edition edn. Lua.org
Ierusalimschy R, Cerqueira R, Rodriguez N (1998) Using reflexivity to interface with

CORBA. In: Proceedings of the IEEE International Conference on Computer Languages
1998, IEEE Press, Chicago, USA, pp 39–46

Ko AJ, Myers BA, Coblenz MJ, Aung HH (2006) An exploratory study of how developers
seek, relate, and collect relevant information during software maintenance tasks. IEEE
Transactions on Software Engineering 32(12):971–987, DOI http://dx.doi.org/10.1109/
TSE.2006.116

Kon F, Costa F, Blair G, Campbell RH (2002) The case for reflective middleware. Commu-
nications of ACM 45(6):33–38

Lazar J, Feng JH, Hochheiser H (2010) Research Methods in Human-Computer Interaction.
Wiley Publishing, Chichester, UK

Maia R, Cerqueira R, Rodriguez N (2004) An infrastructure for development of dynamically
adaptable distributed components. In: Meersman R, Tari Z (eds) Proceedings of DOA’04,
OTM 2004, Springer-Verlag Heidelberg, Berlin, Germany, Lecture Notes in Computer
Science, vol 3291, pp 1285–1302

Maia R, Cerqueira R, Kon F (2005) A middleware for experimentation on dynamic adapta-
tion. In: Proceedings of ARM’05 workshop, ACM Press, New York, USA

Maia R, Cerqueira R, Calheiros R (2006) OiL: An object request broker in the Lua language.
In: Proceedings of SBRC’06 - Salão de Ferramentas, pp 1439–1446

McLellan SG, Roesler AW, Tempest JT, Spinuzzi CI (1998) Building More Usable APIs.
IEEE Software 15(3):78–86, DOI http://dx.doi.org/10.1109/52.676963

29

To appear in Empirical Software Engineering Maia, Cerqueira, de Souza, Guisasola-Gorham

ISSN: 1382-3256 (print version) ISSN: 1573-7616 (electronic version) 29

A
ut

ho
rs

' M
an

us
cr

ip
t

Moura AL, Ururahy C, Cerqueira R, Rodriguez N (2002) Dynamic supportfor distributed
auto-adaptive applications. In: Wagner R (ed) Proceedings of ICDCS 2002 Workshops,
IEEE Computer Society, Washington, USA, pp 451–458

Nierstrasz O, Bergel A, Denker M, Ducasse S, Gaelli M, Wuyts R (2005) On the revival
of dynamic languages. In: Gschwind T, Aßmann U, Nierstrasz O (eds) Proceedings of
SC’2005, Springer-Verlag Heidelberg, Berlin, Germany, Lecture Notes in Computer Sci-
ence, vol 3628, pp 1—13

OMG (2008) The Common Object Request Broker Architecture (CORBA) Specification -
Version 3.1. Object Management Group, document: formal/2008-01-04

Ousterhout JK (1998) Scripting: Higher-level programming for the 21st century. Computer
31(3):23–30

Prechelt L (2003) Are scripting languages any good? A validation of Perl, Python, Rexx,
and Tcl against C, C++, and Java. Advances in Computers 57:207–271

Puder A, R̈omer K, Pilhofer F (2006) Distributed Systems Architecture: A Middleware Ap-
proach. Elsevier, San Francisco, USA

Ramdhany R, Grace P, Coulson G, Hutchison D (2009) MANETKit: supporting the dynamic
deployment and reconfiguration of ad-hoc routing protocols. In: Bacon J, Cooper BF (eds)
Middleware ’09: Proceedings of the 10th ACM/IFIP/USENIX International Conference
on Middleware, Springer-Verlag, New York, NY, USA, Lecture Notes in Computer Sci-
ence, vol 5896, pp 1–20, DOI http://dx.doi.org/10.1007/978-3-642-10445-91

Ranganathan A, Campbell RH (2007) What is the complexity of a distributed computing
system? Complexity 12(6):37–45, DOI 10.1002/cplx.20189

Robson C (2002) Real World Research: A Resource for Social Scientists and Practitioner-
researchers, 2nd edn. Wiley-Blackwell Publishers, Oxford, UK

Rodriguez N, Ururahy C, Ierusalimschy R, Cerqueira R (1996) The use of interpreted lan-
guages for implementing parallel algorithms on distributed systems. In: Bougé L, Fraig-
niaud P, Mignotte A, Robert Y (eds) Proceedings of Euro-Par’96 Parallel Processing —
Second International Euro-Par Conference, Springer-Verlag, Lyon, France, pp 597–600,
Volume I, (LNCS 1123)

Rouvoy R, Merle P (2009) Leveraging component-based software engineering with Fr-
aclet. Annales des T́elécommunications 64(1-2):65–79, DOI http://dx.doi.org/10.1007/
s12243-008-0072-z

Siek J, Taha W (2007) Gradual typing for objects. In: ECOOP ’07: Proceedings of the 21st
European conference on ECOOP 2007, Springer-Verlag, Berlin, Heidelberg, pp 2–27,
DOI http://dx.doi.org/10.1007/978-3-540-73589-22

Vinoski S (2003a) It’s just a mapping problem. IEEE Internet Computing 7(3):88–90
Vinoski S (2003b) The performance presumption. IEEE Internet Computing 7(2):88–90
Wollrath A, Riggs R, Waldo J (1996) A distributed object model for the java system.

USENIX Computing Systems 9

30

To appear in Empirical Software Engineering Maia, Cerqueira, de Souza, Guisasola-Gorham

ISSN: 1382-3256 (print version) ISSN: 1573-7616 (electronic version) 30

A
ut

ho
rs

' M
an

us
cr

ip
t

	Introduction
	Related Work
	The Role of Qualitative and Quantitative Approaches
	CDN Instantiation for Evaluating Middleware Flexibility
	CDN Inspection
	Final Remarks and Future Work

