
 1

On Signifying the Complexity of Inter-Agent Relations in

AgentSheets Games and Simulations

Marcelle P. Mota, Ingrid T. Monteiro, Juliana J. Ferreira,

Cleyton Slaviero and Clarisse S. de Souza
Semiotic Engineering Research Group

Departamento de Informática, PUC-Rio

Rua Marquês de São Vicente 225

22451-900 Rio de Janeiro, RJ - Brazil

{mmota, imonteiro, jferreira, cslaviero, clarisse}@inf.puc-rio.br

ABSTRACT

This paper reports the results of an empirical study about the

semiotic engineering of signs of complexity for live

documentation of games and simulations built with a visual

programming learning environment. The study highlights the

essence of the semiotic engineering process and shows how its

outcome has been received by a group of users who can speak for

a large portion of the live documentation system’s user

population. It also shows how the communication of complexity

is, in and of itself, a major design challenge, especially when

mastering complexity is one of the prime purposes of the

documented object. Because the study was carried out in the

context of a live documentation system, its conclusions can also

illustrate how to conduct semiotically-inspired interaction design.

Categories and Subject Descriptors

H.5.2 [Information Interfaces and Presentation]: User Interfaces

- Theory and methods; Training, help, and documentation. K.3.2

[Computers and Education]: Computers and Information

Science Education.

General Terms

Documentation, Design, Human Factors.

Keywords

Meaning of program representations, Semiotic engineering in

practice, Live documentation, Computational thinking acquisition,

AgentSheets.

1. INTRODUCTION
The importance of developing children’s computational thinking

(CT) skills at school has been repeatedly emphasized over the last

few years [12][13]. The aim of an increasing volume of research

and technology has been to facilitate the teaching and learning of

basic computer programming, an inherently complex cognitive

activity even if achieved with the aid of ‘fun tools’ like toys and

robots, games and animations. The challenge for researchers and

educators is not so much one of simplifying complexity, but rather

one of providing the appropriate means to deal with complexity

and gain mastery of computers.

This paper reports on empirical research with program

representations in AgentSheets, which was carried out to inform

the design of extensions to its accompanying live documentation

system, PoliFacets. AgentSheets is a visual agent-oriented

programming environment with which learners can build games

and simulations [17]. PoliFacets supports the exploration of

various aspects (facets) of AgentSheets programs, like the

depiction and behavior of agents, the structure of game space, the

experience of game play and the program code [11]. The interest

of this research for design and communication studies is that we

follow directives proposed by Semiotic Engineering, an HCI

theory that views human-computer interaction as a specific kind of

computer-mediated human communication. With it systems

producers tell systems users their design vision as well as how,

when, where, why and what for they can use the system [3].

The purpose of the proposed extensions to PoliFacets is to help

CT learners and teachers detect and understand the sources of

program complexity. One of the main sources of complexity in

games and simulations built with AgentSheets is to define and

control how agents affect one another when the program is

executed. Together, AgentSheets and PoliFacets provide various

kinds of representations for understanding local and global

relations, the former being expressed within an agent’s behavior

rules, and the latter throughout the entire game program. The leap

from one to the other, however, is cognitively very challenging for

learners. We thus set out to create an intermediate level of

representation to deal with a limited scope of inter-agent relations,

larger than local, yet smaller than global. Representations of

regional inter-agent relations are thus meant to support

explorations of bounded chains of influence that one agent has

upon the behavior of other agents. By using them, learners (and

teachers) should have more options to divide and conquer

program complexity while trying to understand and explain the

logic of games and simulations.

Permission to make digital or hard copies of all or part of this work for personal

or classroom use is granted without fee provided that copies are not made or

distributed for profit or commercial advantage and that copies bear this notice

and the full citation on the first page. Copyrights for components of this work

owned by others than ACM must be honored. Abstracting with credit is

permitted. To copy otherwise, or republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee. Request permissions

from Permissions@acm.org.
SIGDOC 2013, September 30 - October 01 2013, Greenville, NC, USA

Copyright 2013 ACM 978-1-4503-2131-0/13/09…$15.00.

http://dx.doi.org/10.1145/2507065.2507070

133

In the following sections we briefly describe AgentSheets and

PoliFacets (section 2), then report how we used a qualitative

methodology to carry out a formative evaluation study with users

and finally highlight how its procedures and results elicit and

express the quality of communication we have achieved (section

3). In the last section we discuss our contribution in view of

relevant related work dealing with the signification and

communication of complexity in computer-supported program

comprehension tasks.

2. AGENTSHEETS AND POLIFACETS
AgentSheets is a visual programming tool specifically designed to

promote CT acquisition through the development of games and

simulations. Programming is mainly done through drawing and

direct manipulation of interface elements and the ultimate targeted

users are school children [18].

Although program representations in AgentSheets are very rich

(which is appropriate for learning environments), previous studies

about this system’s interface [5][6] have shown that the overall

communication of the role and meaning of such representations,

as well as that of relations between them, could be improved. The

technical outcome of such studies was a live documentation

system called PoliFacets [11], with which teachers and learners

can explore how the meanings expressed during game play or

simulation execution have been encoded in program structures by

their creators. PoliFacets thus supports reflection upon

AgentSheets programs, a critically important element in the overall

CT learning process. It has been implemented as a Web extension

to AgentSheets, following previous successful experiences with

the Scalable Game Design Arcade, a Web-based cyber learning

infrastructure where learners can assess their progress based on

automatically extracted CT patterns that they have used in their

games and simulations [2].

To illustrate how AgentSheets and PoliFacets work and relate to

each other, we will use a simulation of how industrial pollution

affects the environment. An important aspect of this simulation is

that it is only an expression of its creator’s understanding of

environmental damage caused by atmospheric pollution and by no

means a computational model of the actual chemical processes in

place. Likewise, the names of program elements have been

arbitrarily chosen by the programmer; they aren’t necessarily

natural language words denoting what such elements mean to the

programmer or the game players. This characteristic is very

important as will be seen in subsequent sections of the paper.

2.1 Creating Simulations with AgentSheets
AgentSheets games and simulations consist of two fundamental

components. The first is a set of one or more agents, which have a

visual depiction (possibly many) and whose behavior is defined

by if-then production rules. The other is a set of one or more

worksheets (or game spaces), where agents are deployed at

programming time and where they perform at run time. In Figure

1 we show the deployed worksheet of the environmental pollution

simulation we have used in our study. In it there are agents like

trees and clouds, for instance, placed on top of a background

image with a green field, blue sky, wild flowers, and so on.

Figure 1. The worksheet

Although, as mentioned, all agents behave in accordance with if-

then rules established by the programmer, some may have void

behavioral rule. This is the case of agents whose sole purpose is to

compose the structure of the game space or constrain the behavior

of other agents. As an illustration, Figure 2 shows the agents

gallery and part of the behavior of agent ‘A’. Agents can have

multiple depictions, as is the case with agent ‘A’. It has two

depictions, which are changed as the simulation executes. To

specify the agent’s behavior a user can build rules by dragging and

dropping conditions, actions and even other rules into the

appropriate slots. Rules are formed by multiple rows with

conditions on the left (If) and actions on the right (Then). When all

conditions on the left side are satisfied, actions on the right side of

the same row are executed in sequence.

Figure 2. Gallery and part of the behavior of agent ‘A’

Figure 2 (when in colors) also shows the effects of AgentSheets’

conversational programming style. While a game or simulation is

running, the user can see if rule conditions are true or false for a

specific agent at particular moment in time. Sequentially tested

rules are shown in green (bottom of Figure 2) if they are true and

red if they are false (top of Figure 2). Color and animation help

users understand why agents do (or don’t do) specific actions at

run time.

Furthermore, AgentSheets allows users to generate a report with a

list of all agents’ depictions and behavior rules (see a snapshot in

Figure 3). The report is displayed as a Web page, with hyperlinks

for quick access to related parts of the report. The language used in

the report is exactly the same visual language as used in

AgentSheets’ programming interface.

134

Figure 3. A snapshot of AgentSheets’ program report

In spite of its interactive attractiveness, CT learning processes with

AgentSheets might benefit from extended representations [6]. This

is mainly because while AgentSheets makes action easy to take, it

doesn’t support reflection on action [20] to the same extent. This

finding has seeded the development of PoliFacets [11].

2.2 Exploring Program Facets with PoliFacets
PoliFacets is a Web-based active documentation system for

AgentSheets programs. Once games are uploaded, a range of

facets are automatically generated. The system allows users to

explore such facets by following structured conversational

threads about facets and significant relations between them. For

example, they can ask questions like ‘How many agents are there

in this game? And what do they do?’ or ‘Are there stacked agents

on the worksheet? Where?’. Content provided in conversations

can be automatically generated by the system (based on the

parsing and analysis of uploaded games and simulations) or be

included by students and instructors, a posteriori, by means of

structured annotations to program facets.

Figure 4. Worksheet details

Insights and understanding promoted by PoliFacets are not easily

obtained with interactions with AgentSheets. For example, the

worksheet, a critically important component in a game or

simulation, may have alternate background images that are

switched under certain conditions to produce great visual effects.

However, in order to see if and how background images are used

while analyzing the program in AgentSheets a learner should not

only be able to separate (or visually parse) the background image

from forefront agents in Figure 1, for example, but also spot the

specific rule in one of the various agents’ behavior where there is a

command to switch background image. In PoliFacets this is made

immediately clear when the user explores the worksheet facet

(Figure 4). Note that other relevant details of the game space,

which may actually go unnoticed in the AgentSheets’

programming interface, are explicitly represented and

communicated (e. g. how many cells there are in the worksheet,

how many instances of different classes of agents are deployed,

etc.).

In Figure 5 we see a representation of the worksheet in grid style,

showing the exact positioning of all selected agent intances

(compare this structural view with the game space rendition in

Figure 1, against the background image that is not seen in Figure

5). In PoliFacet’s grids, the user can explore different renditions of

the worksheet (viewing the number of existing agent instances in

each class, where the agents are located, enabling and disabling

agents, viewing and hiding agent stacks, etc.). All such

explorations contribute to grasping how the programmer has

represented and structured the message that he wants this

simulation to communicate.

Figure 5. The grid

Another facet called rules presents a natural language textual

rendition of AgentSheets’ visual rules. The rule content is the

same, but the variation in form (from visual to textual) supports a

more fluid articulation and communication of the rule’s logic.

Figure 6 shows the English translation of the rule shown in the

insert of Figure 3. This feature supports different teaching

strategies. For example, teachers can begin with the visual

programming and then resort to textual rule descriptions when

students are creating games, but do it the other way around when

students are analyzing (their own or someone else’s) games.

Figure 6. Part of the rules of agent A

One of the main features of PoliFacets [11] is the emphasis on

communicating the designers’ intent and message (namely to

stimulate and facilitate reflection upon meanings of/in game and

simulation programs). This is achieved by carefully following a

Semiotic Engineering perspective [3] on interaction design. Part of

this perspective involves having a keen eye for how AgentSheets

signs are communicated and received by users, especially in view

of the overall complexity of programming. Besides various aspects

already mentioned and illustrated in paragraphs above, the

signification (choice of representation) and communication

(expression of meaning and achievement intent) of relations

between agents in the program structure is essential for mastering

the cognitive complexity of programming tasks. This is even more

important if we consider that visual renditions of agents’ behavior

during the game play can suggest logical relations that are actually

135

not encoded as such in the underlying program [5]. In other

words, there may be a number of different program structures that

yield identical visual effects when the program is executed. Calling

the learner’s attention to this is of paramount importance in CT

acquisition if we want them to appreciate (and eventually master)

the power of computing as a new means of expression and action

is society.

Table 1: Signs of inter-agent relations in

AgentSheets and PoliFacets

 Signs of LOCAL

Inter-Agent

Relations

Signs of

REGIONAL

Inter-Agent

Relations

Signs of GLOBAL

Inter-Agent

Relations

A
g

en
tS

h
ee

ts
 Static: Agent’s

behavior rules

Dynamic:

Conversational

Programming

Visualizations

Static:

None

Dynamic:

None

Static: Game

program report and

location in

Worksheet

Dynamic: Game

play (applet)

P
o

li
F

a
ce

ts

Static: Textual

(automatic and

manually annotated)

descriptions of the

agent’s behavior rules

Dynamic:

None

Static:

PROPOSED

Dynamic:

None

Static: Textual

(automatic and

manually annotated)

descriptions of the

entire game and

agents’ locations in

grid

Dynamic: Game

play (applet)

An examination of both AgentSheets and PoliFacets in their

current state of development showed us that when trying to trace

relations among agents – be it because some agent is misbehaving

during execution (which calls for debugging) or because he wants

to see what will happen if an agent’s behavior is changed (which

calls for programming experimentation) – a programmer has two

choices. He can either take a local perspective and inspect agents’

behavior one at a time, or take a global perspective and analyze

the whole program structure and execution (see Table 1). Stepping

from one perspective directly into the other is difficult, which

motivated us to create a new sign of complexity for PoliFacets. In

keeping with PoliFacets’ Semiotic Engineering rationale, our

proposal is meant to communicate (and support subsequent

exploratory communications about) an agent’s regional scope of

influence upon other agents and to bridge an important gap in

both systems. The next section reports what we have found in the

ongoing course of Semiotic Engineering research to achieve this

end.

3. EMPIRICAL STUDY
The semiotic engineering of a system’s interface must always

address two aspects of communication: the emission of the

designer-to-user intended communication and its reception [4].

Therefore, in view of strong evidence that users need, want or may

benefit from some particular piece of communication, the semiotic

engineering process starts with the elaboration of signs for the

emission of the designers’ message. In our case this involved the

elaboration of signs to communicate a bounded area of influence

for all agents in a game or simulation. So, based on previous

research studies and on a careful analysis of AgentSheets

commands and rule structures, we built a diagrammatic

representation of bounded inter-agent relations (see Figure 8 and

additional details in sub-section 3.1). Next, we tested the reception

of our message with a qualitative exploratory study, carried out

initially with six participants.

In order to create a realistic and semiotically adequate situation for

participants to engage in productive communication with

PoliFacets’ and AgentSheets’ representations, we created a

specific simulation where we intentionally introduced various

kinds of inter-agent relations using moderately complex program

structures. That is, we deliberately programmed mutual agent

behavior with command structures that could not be completely

figured out by looking exclusively at individual agents’ behavior

rules.

The six participants in the first phase of the study (P1-P6) were

chosen among teachers and teacher-support team members of the

Scalable Game Design Brasil project (SGD-Br) [19]. The

recruiting criterion was that they had previous experience teaching

AgentSheets to beginners or that they qualified to teach

introductory lessons about AgentSheets programming. Three of

the recruited participants were basic-level game and simulation

programmers (P1, P2 and P3), whereas the others had more

advanced knowledge (P4, P5 and P6). P4 was the most

experienced participant, having taught basic and advanced classes

in one of SGD-Br partner schools. P5 and P6 had relatively less

experience with AgentSheets, but they had additional

programming abilities. P5 had taught programming classes using

Scratch [10] whereas P6 not only taught IT classes for middle and

high school children regularly, but he also had an active interest in

and practice with non-professional programming.

3.1 Procedure and Materials
Our study included two iterations of the following steps: (i)

elaboration of the sign; (ii) sign reception test with participants;

and (iii) analysis of results. The first iteration (or first phase of the

study) showed us how our new message was received and what

elements in it were missed or misunderstood. The second iteration

(or second phase), after semiotic engineering improvements were

made in our message, showed us more clearly if and how the

expression of regional inter-agent relations can help game and

simulation creators gain new perspectives on the complexity of

AgentSheets’ programs. In the second phase of the study we

collected data from five participants, four of which also

participated in the first phase.

The materials used in the study were a combination of existing

AgentSheets and PoliFacets representations for a specifically

designed simulation, along with a manually produced Web page

with our proposed diagrammatic representations of regional inter-

agent relations (with hyperlinks and tooltips for certain elements

of the diagram). A picture of the simulation worksheet has already

been presented in Figure 1 (sub-section 2.1) and is shown in more

details in Figure 7. Examples of diagrams appearing on the

manually composed Web page in the first phase are shown in

Figure 8, in this sub-section, and in Figure 9, in sub-section 3.3.

The simulation represents factories that pollute the environment,

calling the palyer’s attention to the consequences of such

pollution. The names of the agents are single letters: A, B, C, D, E

and F. We avoided using meaningful names in order to stimulate

participants to develop their own interpretation of what the agents

are and do. As part of intentional program complexity, we used

agent and game attributes or properties set to local and global

program variables, as well as methods (to encapsulate a set of

136

rules). Variable and method names, however, were meaningful

words, linked to their purpose or content. We estimated that such

meaningful names would help participants interpret an agent’s

behavior more easily and thus be able to assign meaning to them

(and possibly name them).

Figure 7. Agents during the simulation

In Figure 7 we show an annotated image of various agents while

the simulation is running. The use of letters instead of meaningful

agents’ names gives the reader (as it also gave the participants) a

sense of the complexity of the task, which requires that we

constantly combine names and depictions in sense making. This

sign-association task lies at the heart of a substantial part of

professional programming activities, which justifies the case. The

top-level logic of the game is as follows. If agent A is depicted as a

healthy tree (), it asks agent D to execute the method “erase”

(which may or may not make D erase itself, depending on certain

contextual conditions). If agent D () touches agent E, E’s

depiction changes to the next polluted stage (to or to).

Agent B () increments a variable used by C () to control the

release of D () in the environment. Agent F (,) generates

instances of agent E () on the left side of the worksheet and

erases them on the right side. Agent E () moves from left to

right under certain contextual conditions. If its depiction is that of

a heavily polluted cloud (), it asks agent A to run method

“pollute”, which turns its depiction into that of a “dead” tree ().

When all instances of A are depicted as dead trees, instances of D

are no longer erased. The simulation stops when there is a column

of D agents () straight from some C () into the sky above.

Figure 8. Connections from the agent B

Although the reader is by no means expected to tease out inter-

agent relations from the preceding paragraph, the fact that there

are significant and complex relations among agents should,

however, have clearly come across. In Figure 8 we show the

proposed diagram for the bounded scope of influence of agent B.

Lines indicate that RB1 (rule number 1 of agent B) and RC1 (rule

number 1 of agent C) establish the relations between B and C and

B and D, respectively. The diagram provides navigation links to

rules RB1 and RC1 in the program report (an excerpt is shown in

Figure 3). RB1 connects B and C because the two agents share a

property, that is, they manipulate the same global variable. RC1

connects B and D because it uses a property shared with agent B

in combination with a depiction of D. Just by looking at the

simulation it is not possible to identify the relations among B and

C or B and D. Moreover, an examination of the entire program

code (a global perspective) or of the involved agents’ behavior

rules one set at a time (a local perspective) makes it extremely

difficult not to get lost in the logic of mutual relations unless we

use some tracking notation like a diagram, for example.

Our intended message to the users of the proposed diagrams (as

illustrated in Figure 8) can be expressed using de Souza’s

metacommunication template [3]. What we meant to say with the

diagram and manipulations afforded by the user interface was:

“We [the design team] understand that you [the user] are a CT

teacher. We’ve learned that you need and want to have a deeper

understanding of AgentSheets programs in order to decide what

strategies you will use in class. We have therefore built a

diagram to help you understand relations between agents,

realize which ones are important and see how they influence the

behavior of agents during game play. As you gain deeper

understanding of this facet you will also gain improved skills to

express your ideas through games and simulations. Notice how

agents are related within certain boundaries – not through the

entire game. You can click on hyperlinks to see the complete

behavior rules that establish the relations you see. Links lead

you to different facets of game representation.”

In the first iteration of the procedures, we showed them a run of

the simulation and then asked them to give us a verbal description

of what they saw. Next, we asked them to tell what were the

relations between agents B and C, first, and A and C, second,

using only the material they had at hand (the running simulation,

the open simulation program in AgentSheets, the program report

generated by AgentSheets and the textual rendition of the rules

generated by PoliFacets). When they finished this, we showed

them the inter-agent relations diagram with representations of

bounded scope relations for each one of the agents. We asked

them to comment on the diagrams and then tell us how agent D

was related to agent F. In order to find the right answer, they

should preferably use and manipulate the diagram, but they could

also use the material provided for previous steps.

3.2 First Iteration: Analysis and Results
The qualitative analysis of the data revealed some recurring

categories of meanings from the participants’ discourse, which

was supported by the observation of their interaction with the

provided materials. Categories have been named as follows: affect;

iconicity; dominant language function throughout the entire

discourse; and transition across referential and metalinguistic

language functions.

3.2.1 Affect
Most participants liked the diagram from start. A positive reaction

to the diagram is important because it increases the chance that

users will be initially willing to engage in this sort of

communication.

P1 at the first sight of the diagram said: “I already like it! I love

icons, graphs and (...) there are figures. I already like it!” P3 had

the same kind of reaction: “It's very nice, very clear (...) it will [call

the attention to] the need of understanding the code, (...)

establishing a relation [between agents].” This participant even

anticipated how the proposed diagrams might change the user’s

137

experience with PoliFacets: “[The diagram] changed the whole

[navigation in] PoliFacets (...) I mean, we begin with an image, in

this case with a diagram or a graphic image, and then choose to

see the code or [the rules].”

As a counterpoint, P6 reacted badly when he first saw the

diagram. He said: “You take something simple and make it so

complicated!” However, after he carefully analyzed diagram

representations to answer test questions, P6 had a considerably

different opinion: “This is good; people [can] understand what is

going on (…), it is very useful (…), it is a map (…).”

One of the six participants didn’t like of the diagrammatic

representation at all. Even after using the diagram to answer our

questions, and getting to learn more about what it meant, P2 said:

“I got lost with this diagram (...) I think [understanding inter-agent

relations] is an incremental success or failure [process], you see? I

mean, I don’t know why I would see the relations better here than

in the [rules], honestly.” He summarized his affective reaction to

the diagram by saying: “It scares me more than supports me.”

Affect, however, did no more than pre-dispose the participants

positively (in most cases) or negatively (in a single case) towards

trying to understand and use the diagram. The other categories

brought up stronger insights on the result of our semiotic

engineering effort.

3.2.2 Iconicity
Iconicity is the name we chose to express the fact that participants

showed a tendency to interpret relations in a more concrete way (i.

e. keeping similarities with physical reality) than the style of

abstract symbolic signs used to name agents or to compose the

diagram suggested. For example, most of participants talked about

“toxic rain”, “acid rain” or “cataclysm”, although none of these

expressions had been used in the program. We interpreted this as

evidence of how strongly the participants’ attention was focused

on signs and agents shown during the simulation’s execution,

which is a natural choice for explanations centered on the

contextual message of the simulation.

As an example, when asked to explain the simulation, P2 said:

“This tiny polluting smoke [here], when it comes near the cloud, it

makes the cloud [turn] darker; it pollutes the cloud. Next, you

have toxic rain.” We must remember, however, that the questions

being asked from participants referred to how program

components (and not domain elements) related to each other. If

we look at evidence provided by P2, we see that although he was

able to guess the relation between clouds and smoke (because the

program happened to encode visual effects in a similar way as the

phenomenon is articulated by common sense observation and

reasoning), he failed elsewhere. For instance, he did not realize the

relations between clouds and trees, nor the one between trees and

the effects of calls to the pollute method.

Likewise, P5 (who is a Science teacher) tried to analyze the

simulation scientifically. He, more than any other participant,

needed to see acid rain destroy the trees. His explanation of the

simulation was: “This is a simulation of factories throwing smoke

[in the air]. Because I am a teacher, I know that there is CO2,

which is generating acid rain and the trees are [like] burned out

and everything will be burned out.” He even complained: “You

showed no rain, there is supposed to be rain [falling] from this

cloud.” This participant’s attachment to domain-centered (iconic)

signs was so strong that he simply refused to look at the program

and explain what the relation between selected agents in it was.

Iconicity also misled participants when trying to tell the relation

between agents D () and F (,). The agents themselves are,

semiotically speaking, signs of different types (and intentionally

so). While D () is acceptably an iconic representation of smoke,

F (,) might be the iconic representation of whatever holds a

similarity with a vertical bar. This was in itself a disorienting fact

for an iconic interpretation of all signs in the simulation, given that

there aren’t vertical bars hanging in the skies. As a reminder, agent

F (,), as explained in the previous section, generates instances

of agent E () on the left side of the worksheet and erases them

on the right side. This, however, can be more clearly seen in an

examination of the program code than in an execution of the

simulation or an inspection of agents’ depictions.

When giving the answer for the relation between agents D and F,

P5 looked at the simulation being executed – not at the encoded

program. His explanation for the relation shows how completely

misled he was by choosing to privilege icons over symbols:

“There is a relation only when this tiny smoke is here, in this area

comprised between the two [instances of agent F]. What we see is

that the clouds are all within this demarcated area (…). In fact,

what you wanted to do was to show the relation between the

cloud and the smoke, which is communicated by these little bars

here.”

P6 gave us very powerful evidence of how iconicity and abstract

computing representations and processes generated conflicting

interpretations in his mind. At some point he said “Some drop

should be falling on the tree (...). Did something happen that I

didn’t notice? (…) I just saw the tree turning [orange] (...) I do not

know if [drops] fell so fast that I didn’t see them] Let me play the

simulation over again.” Later, when trying to tell the relation

between agents B and C, P6 went back to the absence of iconic

representations of what he thought was happening: “Visually,

nothing happens, so let me see. (…) But he [agent B] is a counter,

you know, this is what it says here [in the agent’s behavior rules].

He’s counting something there.” So, P6 knew B was a counter,

and yet he could not tell what was being counted.

An interesting hint at the meaning of iconicity was given by P4,

who is a Math teacher and also the most experienced in

programming with AgentSheets among all participants. He was

the only one who did not invoke contextual signs (like rain and

the like) to explain the behavior of agent A. With a remarkably

abstract perspective centered on the assumed logic of the program,

he explained the relation between B and C like this: “The relation

between B and C is that B counts. It looks like C is checking the

count; when B counts, [C] checks if B is at 2; then [C] does

something; and when the counter reaches 3, [C] will do something

else.” P4 simply did not care about what the simulation might

mean and communicate. He gave a correct and straightforward

explanation based solely on how the rules were programmed. We

took this piece of evidence very carefully, however, because

although P4 had much less difficulty in dealing with program

structures, the ultimate intent of our semiotic engineering of inter-

agent relation diagrams is to help teachers and learners realize how

abstract (and considerably different) programming alternatives

signify meaningful things to program creators and program users.

Therefore the strength of iconicity in trying to make sense of

inter-agent relations was not a negative result in terms of previous

and ongoing efforts made by the developers of PoliFacets.

Participants were, in general, under the influence of the meanings

expressed by the simulation. What most of them failed (or had a

138

lot of difficulty) to realize is how those meanings resulted from

inter-agent relations in the program.

3.2.3 Dominant Language Function
If we think about the overall goal of PoliFacets – to support

teaching and learning of CT and computer programming with an

emphasis on meanings – it is critical that PoliFacets be able to

communicate how linguistic constructs effect computations. In

other words, how (visual) programming language commands

cause the kind of agent behavior seen in games and simulations.

From a communicative perspective, the relation between language

and computation can be framed using a well-known set of

language functions proposed by Roman Jakobson [9]. According

to this author, in communication there are six objects of study: the

sender; the receiver; the communication channel; the

communication code; the message; and the context. Human

language can be used to direct the participants’ attention to any

one of these objects. So, for example, when communication is full

of first-person pronouns (“I”, “my”, “me”, “mine”), the function

of language is expressive. Likewise, when communication

provides numerous explanations about the terms being used in a

message (e. g. “CT stands for Computational Thinking” or

“Semiotics is the study of signs”), language is being used to effect

a metalinguistic function. The other four functions that language

can effect are phatic (directing attention to the channel of

communication), connative (directing attention to the receiver),

poetic (directing attention to the message itself) and finally

referential (directing attention to the context of communication,

including the physical and social setting where it takes place, the

purpose and effect of communication, etc.).

The program code is critically important for any piece of software,

given that it causes all observable (and non-observable)

computations. Therefore, one of the categories that emerged from

the evidence collected in our study was the dominant language

function. It follows from the purpose and the design of our study

that we would like participants to use the metalinguistic function

very abundantly. That is, when asked to explain relations between

agents, we wanted them to direct their attention to the code of the

simulation, rather than to the message (the simulation itself) or the

broader context of communication (the fact that factories can

pollute the air and then cause the death of trees, for example).

Three of our participants used predominantly referential function

(P1, P5 and P6), with occasional comments on how the message

was expressed (poetic function). The other three (P2, P3 and P4)

focused on the simulation code, using the metalinguistic function

of language more productively.

P1’s use of the poetic function (focusing on the message), for

example, can show the effects of failing to look at the program

code. His attempt to explain the relation between B and C goes

like this: “Agent C is generating smoke and B… when he sees the

cloud, it stops to generate [smoke], right?.” Notice how all signs in

this piece of discourse (except for agents’ names) are borrowed

from the message, rather than the program code.

A similar situation came about with P5. He was so focused on the

context and meaning of the simulation that he expressed the

relations between B and C like this: “They are setting a limit to

[others], right? It is a limit for [the sky] not to get full of that little

smoke.” Even after looking at the encoded rules, his (equivocal)

conclusion was: “Sure, the role of B is to limit the emission of C.”

This confusion between what the program is doing (the

underlying computation) and what it is causing (the observable

effects in the simulation) can be expected to be a major barrier for

program comprehension and other highly frequent programming

tasks such as debugging and program modification.

The discourse of participants could, however, be more closely

focused on a programming perspective. P2, for example,

explained the relation between many agents in the whole

simulation by saying: “It gets darker in two stages. In the first one

it’s somewhat dark, and then it gets [darker] (...). So there should

be a counter to say ‘when I see [this agent] next [to me], I get

somewhat dark first (...) Then when I, for the ith time, get myself in

this condition, I get darker’ (...).” Interestingly, this metalinguistic

awareness came about by looking at the simulation, mainly – not

the code.

A noteworthy negative effect of predominant metalinguistic

function was observed in P4’s discourse. This participant was so

focused on the code that he barely bothered to look one more time

at the simulation in order to tell the relations between agents. He

looked only at the agents’ behavior rules. As a consequence, his

initial explanation about the simulation (before he answered

specific questions about inter-agent relations) was correct and

precise: “After (…) [all] trees ‘catch fire’ […] smoke keeps

building up (...) because it only begins to accumulate after all trees

have burned.” However, he affirmed quite positively that “agents

A and C have no relation with each other.” That is, because there

aren’t any rules for agent A in which agent C is affected (acted

upon) and vice-versa, P4 said that the two agents were not related.

He missed an indirect relation through agent D that was captured

in his spontaneous explanation of the simulation (that factories,

instances of agent C, generate smoke, instances of agent D, which

accumulates after all trees, instances if agent A, have burned). The

negative effect in this case was not to be guided by the code in

trying to answer the question – which was exactly what should be

done – but the fact that the interpretation of a relation seemed to

be strictly local (within the scope of an agent’s set of rules) and

structural, rather than broader and more expressive (taking a

regional or global perspective).

The dominant language function in participants’ discourse showed

us two things. First, it indicated each participant’s positioning

when trying to explain inter-agent relations. Explanations where

referential or even poetic functions were dominant suggested that

their creators were farther from the level of abstraction at which

we – as designers trying to communicate a particular facet of

meanings – signified our message and on which we were trying to

get users to focus. Second, and possibly more importantly, it

showed that in this group there was not a systematic

correspondence between the dominant function and the level of

programming skills. Two skilled participants chose to explain

relations choosing mainly the referential function, whereas two

less skilled participants chose the metalinguistic one.

3.2.4 Transitions across Language Functions
Although the dominant language function in participants’

discourse did not show a direct correspondence with their

programming skills, this does not mean that those who favored

non-metalinguistic functions failed to recognize that AgentSheets

program constructs determined what was seen in the simulation.

Throughout the entire discourse produced by participants during

the study, we were able to detect transitions across language

functions. These transitions were substantially influenced by the

139

study procedures themselves, considering that we asked

participants to begin by explaining what they saw in the

simulation prior to viewing the underlying program. Only then did

we gradually delve into more abstract meanings, by asking them

about inter-agent relations as signified in the simulation playback

and other program representations. For lack of space (because

evidence emerges from contrasting long pieces of discourse

collected throughout the entire study), in this sub-section we will

only comment on our observations, some of which are supported

by quoted passages above.

P5 and P6, for example, had no difficulty in realizing the

connection between program code and simulation. They could

also express themselves using the metalinguistic function of

language in discourse. However, they preferred to express

themselves using the referential function. They could transition

from one to the other effectively. Likewise, P4, who favored the

use of metalinguistic expression, had no difficulty in interpreting

the simulation with reference to the domain context. Again the

transition between functions did not represent a problem.

However, although P2 and P3, for instance, recognized that

program structures determine the behavior of agents during

simulation (which represents the essence of the metalinguistic

function of any language in relation to another), we have no

evidence of a complete piece of their discourse with a coherent

explanation expressed only in metalinguistic terms. The transition

between language functions was hard for them; they got confused

when trying to establish a connection between program structures

(metalanguage) and simulation (object language). Something

similar happened to P1, whose explanatory discourse during the

study was predominantly expressed with reference to the domain

of the simulation. The transition between relevant language

functions was not observed in his case.

The importance of looking at how participants transitioned from

one language function to the other becomes clearer as we go

deeper in the analysis of this category of findings. All participants

were teachers or instructors. A good teacher’s discourse in class is

typically full of language function transitions, which are skillfully

used to give the students multiple perspectives on the topic being

taught. Consequently, this finding – like the others – called our

attention to something we had not thought of in our original

design.

After we analyzed findings from the first iteration with a group of

PoliFacets users, we improved the semiotic engineering of the

metacommunication message conveyed through the prototyped

interface and proceeded with the next iteration.

3.3 Second Iteration: Analysis and Results
In her pioneering book about the meaning of computer

programming for various groups of people (including children),

Turkle [23] distinguishes between hard and soft masters. Hard

masters have a plan in mind and work rationally to implement it in

the computer. Soft masters interact with the computer and

eventually compose a program with meaningful patterns that

emerge from interaction. In both cases there is a lot of complexity

to be dealt with, although the form it takes and the way it evolves

can be considerably different for hard and soft masters.

The first round of evaluation of the semiotic engineering of

metacommunication to support the detection and understanding

of program complexity in AgentSheets simulations taught us

important lessons. We learned: that a visual representation of

complex inter-agent relations was well received (affect); that to

support correct interpretations of inter-agent relations our

extensions to PoliFacets should signify more explicitly elements

of both the simulation domain and the program code (iconicity,

dominant language function, transitions across language

function); and finally that a critical feature in our piece of

metacommunication, if we want to help PoliFacets users to deal

with program complexity, is to provide abundant support for them

to navigate smoothly between simulation representations and

program structure representations (transitions across language

functions). The latter, in particular, means that the navigation itself

is a semiotically engineered sign of how to relate agents to one

another. Figure 9 and Figure 10 show the contrast between the

first and second (revised) version of the inter-agent relations

diagram, respectively.

Looking at how agent C – the center of the diagram – relates to

other agents in the simulation, we can see that whereas the old

(first) sign had more agents (rectangles) and less connections

(lines), the new (revised) sign has more connections and fewer

agents. This is because the study showed that representing indirect

connections between agent C and agents A and E, in a single

diagram, was more confusing than helpful. The new sign thus

favors a richer (more scaffolded) representation of how agent C

connects only with agents B and D. The annotations to the

diagram nodes and edges have also changed considerably. The

revised version attempts to evoke program elements that cause the

relation between agents, in an attempt to support the transition

between domain-centered interpretations and explanations of

inter-agent relations to program-centered ones.

Figure 9. Old diagram of agent C

Figure 10. New diagram of agent C

The trade-off in our second round of semiotic engineering has

been to shrink the scope of the region of influence (agents A and

E are no longer represented in Figure 10) and to amplify the

communication of the meaning of “influence”. For example,

annotations on edges of the revised diagram explicitly include not

only the rule that causes the influence (e. g. CR1), but also the

program element that originates it (@counter). As a result, the

mutual influence between agents C and A can no longer be seen in

the region of influence of agent C. It will be up to PoliFacets users

to find out that C and A are related by exploring agent A’s

140

diagram while navigating through the various facets of program

meanings in this live documentation system for AgentSheets.

Figure 11. New diagram of agent D

Another element of reengineered signification is the expression of

relations defined in the rules of a related agent. In Figure 11,

dashed orange squares around A and E mean that their relations

with D can be checked only by looking at A’s and E’s own

diagrams. Compared with Figure 9 and Figure 10, this shows that

the relation between C and A, or C and E, shown in Figure 9, is

still unaccounted for by this strategy. This is because the origin of

such relations was not to be found in their own rules (but in agent

C’s rules, as shown in edge annotations depicted in Figure 9).

We presented the new version of our diagrams to all the

participants of our study and to volunteers who had helped us in

preliminary pilot tests with the old diagram. We collected the

impressions from five of them (P1, P2, P3, P4 and one of the

volunteers with advanced knowledge of AgentSheets

programming) by means of a questionnaire with open-ended

questions. We asked them about: how they compared both

versions of the diagram; if/how they would use the new diagram

to explain to a learner the effects of a specifically proposed

program modification; if/how they would use the diagram to teach

AgentSheets programming online or offline; suggestions for

improving the diagram; and additional comments.

The result of this second iteration showed that considerable

improvements were made in our semiotic engineering process. For

example, P2 – the only participant who commented that he did

not like to reason based on visual representations – made the

following comment: “This new version is more provocative to

learning; it teases your chain of thought more strongly by directly

expressing relations with attribute names and properties, for

example. (...) [It’s] more intriguing, I think.” Moreover,

participants that would fall in Turkle’s hard masters category (P4

and P7) productively answered questions involving learning-

teaching situations. They proposed making sensible use of the new

diagram and explored good teaching strategies. However, soft

masters who participated in this second phase (P1, P2 and P3),

although they liked the diagram, showed that they are not yet

prepared to use it effectively in dealing with complex situations.

We thus conclude that soft masters need us to support them

further with appropriate explanatory discourse about program

complexity and how inter-agent relations play a role in it. In other

words, we can use the proposed diagrams in metacommunication,

but they need to be part of a much richer discourse, with various

other signs to convey the essential message.

4. CONCLUSION
This paper presents and discusses the semiotic engineering of

representations to signify and communicate complexity in

computer-generated live documentation discourse about

AgentSheets games and simulations. The emphasis of our research

is not on the proposed representations themselves but on the

rationale, the criteria and the process we have used to produce

them, alternating perspectives between a sender’s (what we mean

to say) and a receiver’s perspective (what others take us to mean

and would like to mean themselves). This is our contribution to

the design of communication.

Our research goals and findings are related to previously published

work in different fields of study. To begin with, our choice of

diagrammatic representations was motivated by research showing

that, unlike sentential representations, diagrammatic ones can

communicate more effectively the information about problem

components, their roles and relations [7]. Moreover, our attention

to the need of regional complexity representations was inspired

by the work of Stenning and Oberlander [22]. These authors

propose that there are three classes of abstract representation

systems: those supporting only minimal one-to-one abstractions;

those supporting limited one-to-many abstractions; and those

supporting unlimited key-switched many-to-many abstractions.

Their study on the cognitive roles played by the three systems in

learning processes concludes that the expression and manipulation

of limited abstractions is critically important for supporting a

learner’s reasoning.

Limiting the scope of required program abstraction is also

supported by previous work in program visualization. Kapec [16],

for instance, whose work discusses software visualizations using

hypergraphs, concludes that even in small software projects large

hypergraphs can be required to express all underlying relations.

These are not at all easy to comprehend. By taking one agent at a

time as the focus of communication and showing its immediate

inter-agent relations, we leave it up to subsequent interaction (like

navigation across various facets of meanings in PoliFacets or

sequential exploration of agents’ area of influence, one after the

other) to communicate elements with which users can gradually

construe the complexity of the program. The overall complexity is

redundantly expressed by mutually-supporting signs like the

simulation playback (in visual language) and the program report

(in textual language), for example.

Previous work comparing three CT learning environments [24]

(Scratch [21], Alice [1] and Greenfoot [8]) concludes that they try

to simplify the job of building computer programs in different

ways. Alice and Scratch mainly eliminate difficulties with the

syntax of program encoding, whereas Greenfoot restricts

programming to a tiny set of Java resources. Additionally, all three

systems value simplicity and aim at removing or hiding accidental

conceptual complexity. This allows users to work only with

fundamental programming constructs. The same can be said about

AgentSheets [17], which has been the reason for developing

PoliFacets [11]. The separation between the programming and the

reflection on programming spaces is how participants of the

Scalable Game Design Brasil project resolved the tension

between AgentSheets learners’ difficulty in dealing with program

complexity and their need to master it in order to build programs

that they really wish to build. So, we keep with the findings from

previous work about how the programming environment should

be, but elaborate on the semiotic richness that can be explored in

live documentation that accompanies such environments. This

decision is in line with the opinions expressed by one of the most

influential thinkers behind user-centered design, Don Norman

[15]. In his 2011 book dedicated to discussing how we live with

141

complexity [14], Norman underlines that: “Modern technology

can be complex, but complexity by itself is neither good nor bad:

it is confusion that is bad. Forget the complaints against

complexity; instead, complain about confusion.”

Our study shows that soft masters, as Turkle refers to

programmers who build software by experimenting with program

pieces and looking at interesting emerging effects [23], are not yet

helped by the communication we propose to include in PoliFacets.

We seem to be speaking only to hard masters, whose approach is

to work from general goals and principles down into the actual

encoding of ideas in the form of program constructs. However, the

positive results concerning the affect of proposed signs suggests

that we can – and must – attempt to build new scaffolds and more

elaborate interactive discourse about the diagrams we have

proposed. Possibly, this communicative strategy will support soft

masters more effectively and empower them to deal with the

meanings and expressive opportunities lying beneath program

complexity.

The next steps in our research is to implement what we have

proposed. With a working prototype, we will be able to make

empirical observations of how hard masters receive our

communication in actual teaching-learning situations using

AgentSheets and PoliFacets. We must also conduct additional

rounds of semiotic engineering studies like the one presented in

this paper, elaborating on signs of complexity so that soft masters

can benefit from them. In one case or another, the longer-term

goal of our research is to use Semiotic Engineering principles and

methods to design efficient and effective communication about

inter-agent relations in AgentSheets games and simulations. This

communication should be primarily used in live documentation

about AgentSheets, but we believe that it should also provide

valuable information for improving AgentSheets’ user interface

itself.

5. ACKNOWLEDGMENTS
Authors would like to thank CNPq, CAPES and FAPERJ, the

Brazilian agencies that support their research in different ways.

They also thank The AMD Foundation for sponsoring the

Scalable Game Design Brasil project, as well as all the participants

who volunteered to help us in this research.

6. REFERENCES
[1] Alice - http://www.alice.org/

[2] Bennett, V., Koh, K. H. and Repenning, A. 2011. Computing

learning acquisition? Visual Languages and Human-Centric

Computing.

[3] de Souza, C. S. 2005. The semiotic engineering of human-

computer interaction. Cambridge: Mass. The MIT Press.

[4] de Souza, C. S. 2013. Semiotics and Human-Computer

Interaction. In: Soegaard, Mads and Dam, Rikke Friis (eds.)

The Encyclopedia of Human-Computer Interaction, 2nd Ed.

Aarhus, Denmark: The Interaction Design Foundation.

Available online at http://www.interaction-

design.org/encyclopedia/semiotics_and_human-

computer_interaction.html.

[5] de Souza, C. S., Garcia, A. C. B., Slaviero, C., Pinto, H., and

Repenning, A. 2011. Semiotic traces of computational

thinking acquisition. EUD’11, Berlin, 155-170.

[6] Ferreira, J. J., de Souza, C. S., Salgado, L. C. C., Slaviero, C.,

Leitão, C. F. and Moreira, F. 2012. Combining cognitive,

semiotic and discourse analysis to explore the power of

notations in visual programming. VL/HCC’12.

[7] Glasgow, J., N. H. N. and B. Chandrasekaran. 1995.

Diagrammatic Reasoning: Cognitive and Computational

Perspectives. MIT Press, Cambridge, MA, USA.

[8] Greenfoot - http://www.greenfoot.org/

[9] Jakobson, R. 1060. Closing statements: Linguistics and

Poetics, Style in language. T.A. Sebeok, New-York.

[10] Maloney, J., Resnick, M., Rusk, N., Silverman, B., and

Eastmond, E. 2010. The Scratch Programming Language and

Environment. Trans. Comput. Educ. 10, 4, Article 16.

[11] Mota, M .P, Faria, L.S. and de Souza, C.S. 2012.

Documentation Comes to Life in Computational Thinking

Acquisition with AgentSheets. In Proceedings of the 11th

Brazilian Symposium on Human Factors in Computing

Systems (IHC '12). Brazilian Computer Society, Porto

Alegre, Brazil, 151-160.

[12] National Research Council Committe for the Workshops on

Computational Thinking. 2010. Report of a Workshop on

The Scope and Nature of Computational Thinking.

Washington, D.C.: The National Academies Press.

[13] National Research Council Committee on Information

Technology Literacy. 1999. Being Fluent with Information

Technology. Washington, D.C.: National Academy Press.

[14] Norman, D. A. 2011. Living with Complexity. Cambridge,

Mass.: The MIT Press.

[15] Norman, D. A. and Draper, S. W. 1986. User Centered

System Design. Hillsdale, N.J. Lawrence Erlbaum.

[16] Peter Kapec. 2010. Visualizing software artifacts using

hypergraphs. In Proceedings of the 26th Spring Conference

on Computer Graphics (SCCG '10). ACM, New York, NY.

[17] Repenning, A. and Ioannidou, A. 2004. Agent-based end-

user development, Communications of the ACM, v.47 n.9.

[18] Repenning, A., Webb, D., and Ioannidou, A. 2010. Scalable

game design and the development of a checklist for getting

computational thinking into public schools. In Proceedings of

the 41st ACM technical symposium on Computer science

education (SIGCSE '10). ACM, New York, 265-269.

[19] Scalable Game Design Brasil - http://www.sgd-br.inf.puc-

rio.br

[20] Schön, D. 1983. The reflective practitioner. New York, NY.

Basic Books.

[21] Scratch - http://scratch.mit.edu/

[22] Stenning, K. and Oberlander, I. 1995. A Cognitive Theory of

Graphical and Linguistic Reasoning: Logic and

Implementation. Cognitive Science, vol. 19 (1).

[23] Turkle, S. 2005. The Second Self. Computers and the Human

Spirit. Twentieth Anniversary Edition. Cambridge, Mass.:

The MIT Press.

[24] Utting, I., Cooper, S., Kölling, M., Maloney, J., and Resnick,

M. 2010. Alice, Greenfoot, and Scratch - A Discussion.

Trans. Comput. Educ. 10, 4, Article 17.

142

