
Documentation Comes to Life in Computational Thinking
Acquisition with AgentSheets

Marcelle Pereira Mota, Leonardo Serra Faria, Clarisse Sieckenius de Souza
Departamento de Informática, PUC-Rio

Rua Marquês de São Vicente 225
22451-900 Rio de Janeiro, RJ

{mmota,clarisse}@inf.puc-rio.br

ABSTRACT
This paper is about the use of live documentation in
Computational Thinking Acquisition (CTA) programs with
AgentSheets. AgentSheets is a visual programming
environment to build games. Based on previous studies
showing that semiotic relations among visual game
elements could be further explored to the benefit of the
learners, we designed The PoliFacets, a Web extension to
AgentSheets cast as a live conversational document. With
it, teachers and learners can follow different threads of
conversation about (multiple representations of) game
elements and relations between them. We present a
qualitative evaluation study of The PoliFacets with two
experienced AgentSheets instructors and three school
teachers trained to coach students in CTA programs.
Findings show that although our system has not yet
completely fulfilled our design intent, it has led participants
to gain relevant insights about their teaching and learning,
as well as to articulating doubts and misunderstandings that
could have otherwise gone unnoticed.

Keywords
Live documentation; computational thinking acquisition;
metacommunication, end-user programming; AgentSheets.

INTRODUCTION
Live documentation has been a topic of discussion for
decades. From early attempts at design rationale and
critiquing systems [13][8] to task-oriented instruction
wizards [17] and explanation systems [10], interactive
systems that can answer questions and perform tasks in
specific domains have always figured as an attractive
alternative to traditional passive documentation. Progress
in distributed and multimedia systems leading to
investigations in collaborative knowledge building and
learning environments [9] or enriched representations of
content [15], have led to even more sophisticated forms of
documentation and communication around it. Nevertheless,
the design of efficient and effective help systems – the

most common form of online documentation – has
remained a challenge to this date. Work carried out only a
few years ago reports that such systems are not the users’
preferred choice when they need help to solve problems
[16], a good candidate explanation for why online help
systems typically deserve much less attention in systems
and interaction design than would be expected. Using
search engines to find help has in fact become common
practice [23].

Documentation is a critical component in software,
especially in software designed to support learning. This
paper is about documentation design and use in
AgentSheets [19] version 3.0, a visual programming tool to
support computational thinking acquisition. In it we present
The PoliFacets, a Web-based active documentation
extension to AgentSheets.

Active documents have been conceived and defined in
different ways. For example, Phelps [17] takes the
“conversation between users and a program” as the
essence of active documentation. Bicharra [4], however,
takes the essence of “active [design] documents” to lie in
the system’s ability to interpret, critique and learn from
observing users as they engage in various kinds of tasks.
Both approaches are meant to help users solve problems,
although Bicharra’s is more explicitly committed to support
reflection in and on action [20]. Our approach to designing
The PoliFacets incorporates aspects of both. By using
concepts from Semiotic Engineering [5], we conceived this
active document as an epistemic tool that supports
reflective activity, although it isn’t able to interpret,
critique and learn from users’ interaction with AgentSheets.
The interest of this research in the context of active
documentation is thus to discuss expected and achieved
gains in reflection on problem-solving tasks (closer to
Bicharra’s approach) with a system that is designed for
conversation but doesn’t require Artificial Intelligence
apparatus (closer to Phelps’s approach).

In Semiotic Engineering, interactive software is viewed as
a kind of proxy for software designers and developers.
Through systems interfaces, software producers have
computer-mediated conversations with software
consumers. Documentation in online help modules thus
becomes a prime opportunity for designers and developers

LEAVE BLANK THE LAST 2.5 cm (1”) OF THE LEFT
COLUMN ON THE FIRST PAGE FOR THE

COPYRIGHT NOTICE.

To appear in the Proceedings of IHC2012 Author's Copy

1

to ‘have a conversation with users’, not only about
supported tasks and the kinds of problems that can be
solved with the system, but also about the system’s value,
interesting contexts of use, etc. [21]. Live documents like
The PoliFacets are software about software, whose
designers have twofold intent. One is to tell the users about
how it can be used, for what purposes, when, where, by
whom and why. The other, because its users are also the
users of another system which constitutes the very object of
live documentation, is to tell them the same kinds of things
about the other system.

The PoliFacets was designed using the Semiotic
Engineering metacommunication template [5], a carefully
structured model of how to communicate through and
about systems interaction. As an indication of how
successful this approach to active documentation can be in
practice, we report and discuss the results of a preliminary
small-scale study with school teachers and AgentSheets
instructors participating in a CTA project. Our focus is on
how AgentSheets uses and deploys various styles of
computer-mediated communication to achieve its goal.

In previous studies [6][7] we found that although
AgentSheets communication is very rich, including several
active documentation features that support reflection in
(i.e., during) action, further semiotic engineering of game
design documentation might improve the teaching-learning
process in important ways. As a consequence we designed
The PoliFacets to act as a mediator between AgentSheets
users (teachers and students), the visual programming
environment and its associated instructional resources.
Mediation is achieved through descriptions, explanations
and illustrations communicated as users engage in
conversations about computer games produced with
AgentSheets. The ultimate intended effect of mediation is
to support reflection on action (i.e., about action results),
by means of organizing documentation resources
distributed across AgentSheets modules and deploying it as
a cohesive network of conversations that can give users a
better understanding of what AgentSheets means and what
they can do with it.

The paper is structured in five sections. After this brief
introduction, we present an overview of AgentSheets,
emphasizing its conversational programming features [18],
as well as its explanation and online documentation
resources. Then we present The PoliFacets and highlight
the main points in the semiotic engineering process of this
tool. In a subsequent section we present the qualitative
study we carried out with participants of our CTA project
and report on the main findings. In the last section we
discuss the meaning and implications of our current
findings in view of related work. We also indicate the next
steps we plan to take in this research.

AGENTSHEETS
AgentSheets [19] lets users create games and simulations
through direct manipulation of objects displayed in a user-

friendly visual programming interface. Simulations can be
built to explore complex ideas or to communicate them to
other people. By building games and simulations users can
understand fundamental concepts of programming and
computation, such as abstraction, algorithmic thinking,
programming logic, etc.

In AgentSheets programming is centered on defining
agents and their behavior. The latter is achieved by if-then
rules with conditions and actions. Figure 1A shows how an
agent’s behavior is visually specified. The agent’s
condition to be tested is on the left side and the action to be
performed when the condition is true is on the right side. If
the user selects parts of the rule and presses the Explain
button (bottom of Figure 1A), AgentSheets displays a brief
description of how such parts are interpreted. In this
example, if the user selects the upper box on the ‘if’ side of
the rule and presses Explain, AgentSheets says: True if the
up arrow key is currently being pressed. One of the
attractive features of AgentSheets is that the textual
explanation is coordinated with the visual specification of
the rule using animations. For instance, the word key in the
textual explanation is momentarily colorized with the same
color as the rectangle ‘key’ in the visual specification
shown in Figure 1A. Next the same happens with up arrow
and its corresponding image, and so on. Rules are grouped
into triggers like “while the program is running” or “when
creating a new agent”, for example. The list of rules is
tested sequentially. When all conditions for one of the rules
are satisfied, the corresponding set of actions is performed,
the trigger cycle is terminated (without testing subsequent
rules) and a new cycle begins testing all rules in sequence
again.

Figure 1. AgentSheets’ desktop

To appear in the Proceedings of IHC2012 Author's Copy

2

Figure 1B displays the gallery of agents and Figure 1C the
worksheet (i.e., the game board or simulation canvas)
where all the agents are positioned. The whole program is
built visually and agents are placed in the worksheet with
drag-and-drop moves. In the gallery it is possible to create
more agents and edit their behaviors. Agents can have one
or more depictions. For example, the Pacman agent has
four depictions, each one looking in a different direction,
which is required for realistic visual behavior during the
game. The user can run, stop or pause the game, as well as
control the game speed (from slow to fast) in the
worksheet. The reset button returns the worksheet to its last
saved state and the clear button erases all the agents in it.

There are three types of documentation in AgentSheets:
static descriptions (like visual programming resources and
reports); online community resources (like wiki, game
arcade, etc.); and dynamic hints and clarifications (mainly
conversational programming features).

While a game or simulation is being executed, the user can
turn on AgentSheets’ conversational programming features
[18]. If so, while rules are sequentially tested, a color code
is used to signal that their pre-conditions are (green) or are
not (red) true in that particular execution cycle. If the user
runs the game at a slow speed, he can ‘see’ the trace of
program execution on a separate window and check if the
logic of the program is correct (i.e., that condition-action
pairs lead to the desired effects). Color and animation help
users understand why agents do what they do at run time.

In an addition to conversational programming, AgentSheets
provides a static HTML program report with a description
of all agents and triggers. This report can be used to inspect
agents’ behavior and reflect on the game. However, it is
not properly communicated in the interface. It is hiding as a
single secondary option in one of the tool bar menus. The
outstandingly visual nature of communication in
AgentSheets makes it very unlikely that users will get the
message about the value of this program report [6].

In a previously published study, we showed how
participants of a CTA program using printed copies of a
slightly extended version of the program report [7] could
expand and correct prior learning. We concluded that
communication of and about new game representations
could support new teaching strategies and thus looked at
empirical results to identify initial requirements for the
development of The PoliFacets. At first, The PoliFacets is
being developed by our research group to complement the
AgentSheets and we decided to keep it separate to speed
the studies until it is more consolidated. So it will be
integrated into the AgentSheets Game Arcade. Although
the project in that study being conducted in Brazil, we have
a commitment to the international project, and then The
PoliFacets is written in Brazilian Portuguese and English.

THE POLIFACETS
As already mentioned, The PoliFacets has been designed
using Semiotic Engineering, a theory of Human-Computer
Interaction where systems interfaces are seen as messages
sent from designers to users [5]. The interface delivers the
designer’s message about how, when, where, what for and
why to use systems. Users communicate directly with the
system using the interface, and designers communicate
indirectly with users through the system.

In this research, we introduced an additional mediator to
enrich and explain the message AgentSheets designers send
to their users through the original visual interface. Using a
mediator can make the designers’ message easier to
understand, increasing the means and modes to explain
important information whose original communication can
be implicit or subject to some ambiguity. Acting as a
mediator between (a) users, (b) AgentSheets, and (c) the
various computational thinking and visual programming
resources in and around this application, The PoliFacets
actively communicates about meanings encoded in
AgentSheets programs. Such meanings constitute the
object of further conversations with the user. As a result,
our system augments communication, but does not
introduce new topics of conversation compared to the
entire set of resources provided by AgentSheets. It is the
outcome of a semiotic re-engineering of meanings, in the
form of active documentation.

Technically, The PoliFacets is a Web application that can
be invoked while interacting with AgentSheets. In it, users
(typically CTA teachers and students) can explore
alternative representations of their game, detect bugs,
devise corrections and even see the opportunity to create
new agents and behavior rules. Conversations refer to
explanations, illustrations, questions & answers, contrasts,
suggestions and comments about all uploaded material.
Consequently users can not only see different aspects of
their own projects, but also contrast their solutions with
those of others. Our design intent is to allow users to
engage in collaborative activity (sharing games, solutions,
as well as questions and even challenges or exercises). The
PoliFacets is thus a place for communication, analysis and
reflection, whereas AgentSheets is mainly (but not only) as
a place for design and building.

The generation of conversational paths starts when the user
sends a project to The PoliFacets. The system captures and
parses project information, which is then used to fill in
various templates in the network of all possible
conversations. Each uploaded project has its own network
of conversations. There are four major sections in the
network: “Agents; Worksheets; Rules”, “Game Logic”;
“Applet”; and “Report”. Cross-section conversations can
be accessed through the top menu bar (the entry page
“Games”, “Send New Game”, “Send your Questions”,
“Help”). The richest part of the network of conversations is
“Agents; Worksheets; Rules”. As its name suggests, the

To appear in the Proceedings of IHC2012 Author's Copy

3

topic of conversation is the essence of AgentSheets games
and simulations. From this topic, a web of sub-topics
unfolds. In Figure 2 we illustrate how users can talk about
different sub-topics like: how many agents are in the
worksheet and what they do; what the agent behavior is;
where the agents are located; etc.

Figure 2. Options of conversations network

Games can have more than one worksheet and The
PoliFacets allows for viewing alternative images. The
position and behavior of agents is presented and explored
in accordance with the selected worksheet. The game
image can be produced from a background image with
agents in the foreground or with multiple arrays of agents,
often stacked on top of each other. Together produce the
impression of background and foreground. If users choose
the latter, the behavior of hidden agents in the background
may occasionally affect the game in seemingly mysterious
ways. Conversations about ‘how the image is produced’
point at these possibilities, complemented by conversations
about ‘how many agents are in the worksheet and what
they do’. For example, as shown in Figure 3, the user can
see the number of instances for each agent in the
worksheet, as well as all the types of agents used to
compose the game. The PoliFacets gives users an
opportunity to explore hidden agents (agents whose image,
or depiction, cannot be perceived when the user looks at
the worksheet). When users press the Hide all button all
agents disappear from the worksheet. They can then choose
to see instances of agents type by type (e.g., check the Win
agent only to see where its two instances are located, then
uncheck it and check the Pacman agent only, and so on,
and so forth). In this example, the Win agent is depicted as
a diamond (see the center of the image) and only one
instance is visible, although The PoliFacets communicates
that there are two instances of it in the worksheet. The

other one must be hiding somewhere. Show and hide
conversations will tell the answer.

Figure 3. The structure of game and Agents’ checklist

The structure of the worksheet plays a fundamental role in
the success of game and simulation programming. Figure 3
helps to illustrate the epistemic effect of conversations in
our live document. Our design intent in this piece of
semiotic engineering is to instigate the learner to discover
what is happening, starting from looking for where the
second diamond is ‘hiding’.

As already mentioned, hiding agents can bring up
undesirable effects in the game. For example, if Pacman is
programmed to win when it moves onto a diamond, then
the hiding diamond may cause Pacman to erroneously win
in some other place than the central cell of the worksheet.
This case shows that our live documentation is also a
powerful debugging tool.

The PoliFacets presents the logic of all agents’ behavior in
automatically-generated natural language text. An example
is shown in Figure 4, with part of the description of agent
Pacman.

Figure 4. Example of Logic Game in natural language

We believe that the verbal representation of visual
AgentSheets rules can not only boost sense-making
processes that are fundamentally important for novice CTA
learners, but also be used as part of different teaching
strategies. For example, teachers can ask students to
generate themselves one representation in view of the other
to try and develop desirable conceptual associations.
Specifically, we can explore how reflexive actions like

‘erase itself’ () are encoded and used in

To appear in the Proceedings of IHC2012 Author's Copy

4

AgentSheets, something that one of our previous studies
has shown to be a problem for some students [7].

Although there are many other relevant aspects in the
semiotic engineering of live documentation cast in The
PoliFacets, we do not have the necessary space to discuss
them here. Nevertheless, we believe that the examples
above are sufficient to give the reader an idea of how
documentation comes to life in the context of our research
project. In the next section, the reader will see how users
actually received our message through The PoliFacets’s
interface, that is, the outcome of our semiotic engineering
process.

EMPIRICAL STUDY
The main goal of this CTA project, at its current stage, is to
promote computing literacy that, at later stages, enable new
forms of social participation, that is, acting through
software. Thus our first goal is to teach users how to build
small programs and use it to communicate ideas in school-
related activities. Teachers can apply AgentSheets games
and simulations to illustrate content in their respective
disciplines. Likewise, students can be stimulated to express
their learning through their own versions of games and
simulations.

Our empirical study was conducted within this context, as
part of an ongoing CTA program carried out in a Brazilian
public school since 2010.

Methodology
The goal of the study was to understand challenges in
teaching and learning computational thinking and to see
how Coaching Teachers, in their own training and
preparation for subsequent activities with students, react to
The PoliFacets when they first meet it. Their reaction is a
sign of how our design message is received by a group of
actual users. We expected results to provide at least two
sorts of indications: firstly, how successful our semiotic
engineering process was; and secondly, as a typical result
of qualitative research [10], what other meanings emerge
from data collected in the study, pointing at potentially
unsuspected new challenges and possibilities.

We invited a group of three ‘teachers to be’ (T2B) in the
process of training for an upcoming program with their
students and two AgentSheets instructors (ASI) with
previous experience. This is a purposive sampling because
we are committed to supporting participants of a pioneering
CTA project in Brazil, which has involved a total of three
AgentSheets instructors, four coaching teachers and
approximately forty students. We used questionnaires with
open questions, live interviews, observations of interaction
with technology and a focus group.

Participants
The T2B group included lower and middle school teachers
participating in our CTA project. One is a Biology (P1)
teacher and the other two are Math teachers (P2 and P3).
Neither of them had any previous knowledge of

programming and their training with AgentSheets took
approximately 12 hours. An interesting aspect of this group
is that, as they learn about AgentSheets and Computational
Thinking, they are necessarily thinking about their
subsequent teaching activity. Therefore, reflection in action
and reflection on action [20] are both intensive.

The ASI group included two AgentSheets Instructors (P4 e
P5) with expert knowledge in computing. P4 is an MSc
student in Computer Science and P5 has a PhD in Human-
Computer Interaction from a CS program. P4 has
participated in three teacher-training programs and P5 has
participated in one.

Procedure
The procedure with the T2B had four steps. We created a
very simple AgentSheets variation of the well-known
PACMAN game, where Pacman moves around the game
space, eating food and trying to escape from monsters. In
our simplified version, all Pacman does is to eat green
points on its way to a blue diamond.

The first step in the procedure was to read a specifically
designed test scenario and implement small changes in the
game. Teachers were asked to explain what they planned to
do first and then do it in AgentSheets. The second step was
an introduction to The PoliFacets. We made a short slide
presentation conveying the big picture of the system (like
one finds in typical Web pages describing software
products in the Internet). Then, we demonstrated The
PoliFacets web site, navigating through its main functions.
The demo included our own version of the scenario task
(which did not necessarily coincide with the solutions
presented by participants). We took this opportunity to
emphasize that there are many ways to design games that
exhibit similar perceived behavior. Through out this step,
T2B could ask questions and make comments, to which we
responded accordingly. The third step was asking T2B to
make a second change in the game. Now they had a
specific goal to achieve. They should make Pacman step
onto the blue diamond. As soon as that happened, they
should display a message to the user saying that he would
move to the next phase, the Pacman should disappear from
the worksheet and the game should terminate, in this order.
The fourth step of our study procedure with T2B was a
focus group. In it we had the opportunity to discuss the
participants’ experience with AgentSheets and their first
impressions about The PoliFacets. During the whole
procedure we collected observers’ annotations, screens
captures and voice recordings.

The procedure with ASI also had four steps, although
different ones. In the first step ASI watched a slide
presentation about The PoliFacets. In the second step, they
accessed The PoliFacets web site and navigated freely to
explore some of the functions presented in the slides. The
third step was to answer a questionnaire with open-ended
questions to collect their first thoughts about the proposed
technology. The fourth step was an online chat interview

To appear in the Proceedings of IHC2012 Author's Copy

5

for further clarification and discussion of topics explored in
the questionnaire. In this second four-step procedure we
gathered data questionnaires and the online chat sessions.

Results
In this section we will highlight main categories of
meanings emerging from the data. We will present them
merging T2B and ASI evidence because the relevant
categories were found in both. Because of lack of space we
will illustrate each category with only one or two pieces of
evidence, although much more evidence contributed to the
reported findings.

Learning Difficulties
We observed that T2B participants have difficulties to
decide where to place behavior rules. They would
repeatedly open and close windows before deciding where
the rule should go. Moreover, they often realized that their
choice was wrong and changed the rule location again. In
addition to the difficulties in deciding how to define rules
that refer to mutual behavior involving more than one
agent, the situation was aggravated by semiotic engineering
problems in AgentSheets interface, which scatters
information across multiple independent windows without
providing additional integrative viewing mechanisms.

P2 said: “I will place [the rule] in the little bullet
[behavior]. If see the little bullet, [then] move right (…)”.
P2 did not notice that this rule formulation was wrongly
associating the behavior rule to the object of the condition
(the little bullet), rather than the subject of the action
(Pacman), as required by AgentSheets rules. This
fluctuation of perspective was extensively evidenced in one
of our previous studies, too [6].

ASI participants talked about other common difficulties
that students have in understanding the structure of game
rules. They reinforced evidence such as P2’s, above, saying
that students have problems to realize that rules are strictly
related to a single agent, that conditions and actions pertain
only to the agent being currently defined. P5 said: “During
the creation of a new game, students find it difficult to
‘bridge the gap’ between their definition of the game and
the programming [that corresponds to it]. ‘Where to start’
is a recurring problem”.

ASI also mentioned further difficulties with the visual
encoding of game logic. All conditions appearing in the
same rule block express a logic conjunction (AND). If
users want to express logic disjunctions (OR) they have to
create multiple rules, one for each clause in the disjunction.

P4 said: “They [Students] face difficulties in
understanding that the order or rules can affect game
execution. […]Initially it is difficult to understand which
conditions are “additional” (AND) and which are
“optional” (OR).”

P5 said: “[Students] also experience in the programming.
For example: […] when to encode rules into single x
separate blocks.”

Abstraction
ASI have talked about learners’ problems with abstractions
in different circumstances. P5, for example, comments that:
“Students also don’t remember to associate rules with
[more general computational thinking] patterns and fail to
realize that behaviors can be copied from one agent to
another”. This observation is actually critical in a broader
CTA perspective, since abstraction is one of the
fundamental skills required in computational thinking.

In the T2B group, we observed that P1 and P3 hadn’t
grasped the difference in meaning between classes and
instances of agents. In AgentSheets this difference is
ambiguously expressed by contrast between linguistic and
visual representations. The ‘class’ is referred to by its
name, whereas ‘instances’ are represented by individual
depictions (multiple images of the agent on the worksheet).
P1 and P3 defined agents’ behavior by defining multiple
instance-level rules, for each one of all the depictions of
Pacman. They complained that this was a lot of work,
failing to realize that they could define behavior for the
whole class. P2, however, vaguely remember that this was
possible and asked if there wasn’t an easier way to perform
the task she had to complete.

Program Execution Logic
As is apparent in P4’s testimony mentioned above,
understanding how the order of rules affects execution is
hard. T2B learned that the order of rules was important, but
they actually did not quite learn how and why order affects
execution. So, as soon as something went wrong in their
program, the order of rules quickly came up as a candidate
explanation for error. As a consequence, changes in the
order were more erratic than reasoned. P1, for instance,
was confused by mutually exclusive rules. When having to
define rules for Pacman behavior when moving on(to) the
floor or the little green bullets he said: “I think this will
cause conflict”, failing to realize that the logic of rules was
a case of disjunction and not conjunction.

This problem is actually associated with another one,
which is just as difficult or more: the sequence of
instructions execution in AgentSheets. Execution is carried
out in rule-testing cycles for all agents. Agent behavior
rules are tested sequentially until the conditions of one rule
are all true. When this occurs, the corresponding action set
is executed and the cycle is terminated without testing the
rest of the rules defined for that particular agent. This is the
main instrument to introduce and teach algorithmic
thinking, but learners, as P1 above, have persistent
problems with it.

Recognition of value in The PoliFacets
All participants praised the possibility of sending questions
to a teacher or instructor through The PoliFacets’s
interface. They also valued having access to Frequently
Asked Questions. P5 said: “I think this is very good. Also
because the same questions come back during the lesson.
The teacher can motivate the use of the FAQ […]. It will be

To appear in the Proceedings of IHC2012 Author's Copy

6

much less stressful for him and the student can realize that
many questions have already been answered before.
Sending questions online is great if the answers come fast”.

Another praised feature of our active document was to
show (reveal) the structure of the worksheet. All
participants could think of actual instances when having
this available would have been very useful in their learning
or teaching context, especially for debugging tasks. P2 and
P3 commented on different situations where they were
forced to build a whole new worksheet because they simply
could not spot and delete some hidden agent that was
causing the game to behave in undesired ways. The amount
of re-work was especially critical if they had a complex
worksheet, with numerous interacting agents on it.

In AgentSheets, users must probe for hiding agents by
clicking on all individual cells in the worksheet. There is
no way to have like a radiography of the game space
structure and go directly (and solely) to the spots where the
origin of problems may be. In The PoliFacets, however,
with Show/Hide stack in grid conversations combined with
Show/Hide [sub‐sets of agents] conversations, users can be
quickly directed to problem areas (see Figure 5). This is
what participants were referring to. During the presentation
and demonstration of The PoliFacets, T2B participants
quickly noticed that there were two Win agents (depicted as
a blue diamond) in the worksheet instead of one, which
they could see. They immediately realized it could be a
problem. If the rule was the Pacman stacked somewhere
above the blue diamond, the game will finish even if the
blue diamond is stacked above the Ground agent.

Figure 5. Structure of game worksheet hiding ground agent

and showing stacked agents in highlighted point

The PoliFacets Applications
ASI participants emphasized the application of The
PoliFacets inside and outside the classroom, as a resource
both for students and teachers. P5 said: “I think teachers
would use it as an aid to increase their own knowledge and
prepare their lessons”. P4 said: “For example, a student
who is having problems [with game execution] and verifies
that all of the rules are implemented properly could find
out that the problem is [having] stacked agents [in the
worksheet]. Another student may find that a rule that he
created is not associated with right agent, and so on (…) I
think The PoliFacets can be an excellent tool to show
students a different view of the game. Many people don’t

initially see what a particular problem is. But this is not
because they don’t know [that the problem can occur];
they don’t visualize it. The PoliFacets brings another
vision that can help users to find these errors and find new
possibilities for the game”.

The last comment refers exactly to one of our main
motivation in developing The PoliFacets. We intended to
create new game representations that had the potential to
trigger reflection and insights.

New Features
During focus groups activity P1 and P2 suggested several
improvements in the structure of game worksheet. One was
to name columns and rows of the worksheet grid, following
the ‘Battleships game board’ (as the metaphor also used in
spreadsheet applications interestingly occurred to them in
this context of games). Thus they would be able to have
conversations about ‘cell A4 or B5’. Another improvement
would be to show the worksheet grid with the total number
of agents’ instances on each cell. In its current
implementation stage, The PoliFacets reveals only the total
number of agents in the worksheet.

Still talking about the game structure, they further
suggested that we improve the representation of stacks.
ASI, in particular, suggested that we could take the
opportunity to explain in more details the concept of stack,
which is essential to programming.

Another important improvement suggested by P4 was this:
“The PoliFacets might also support the visualization of the
relationship between agents. For example, if we see that
agents exchange messages with each other, which agents
[ones are talking to which] other agents on the worksheet”.
More than that, this possibility would explain the critical
role of some passive agents (i.e., agents without behavior),
since by simply being there, on the way of other active
agents, they can influence the behavior of the latter.

P5 suggested that in addition to FAQ and sending
questions to the teacher, The PoliFacets could provide a
forum for students and teachers to discuss games, ask
questions, share ideas, and so on. According to P5 there are
good reasons for creating this type of resource: “I saw […]
that new questions will be incorporated in the FAQ, but I
also find it interesting to provide the history of questions
and answers (such as an open forum thread). It would be
great if The PoliFacets allowed the teacher to make
searches in forum discussions. I use this tool a lot on the
Internet to find solutions to various kinds of problems. It is
rare to [not find a solution to] my problem, because
problems and doubts are usually recurring. Besides it is
good to know I'm not the only one to have doubts about a
particular topic”.

DISCUSSION
We divide our discussion in two parts. The first aims to
address the findings and relating them to the features that
we have (or have not) included in the current version of

To appear in the Proceedings of IHC2012 Author's Copy

7

The PoliFacets. In other words, this part tells how the
designer-to-user message of this tool was received by
users. The second part connects our findings about The
PoliFacets with previous related work.

About the Learning problems associated with the difficulty
in deciding where to place behavior rules, The PoliFacets
provides automatically generated natural language
descriptions of rules for all agents in the game. We hope
that recurring natural language patterns showing recurring
subject-action-object text will spark the learners’ insight
that there is regularity in this and that they should attend to
it while encoding agent behavior (see text in Figure 4 and
also in Figure 7 for examples). Textual representations, as
was already the case with AgentSheets program report, can
compensate for scattered information across multiple
windows in the visual programming environment.

Regarding the interpretation of AgentSheets interface
visual language, natural language text in The PoliFacets
also provides an explicit rendition of the game logic
concerning conjoined and disjoined behavior conditions.
Like P4 said: “I think the description of the rules in natural
language is closer to the reality of students and more
understandable”.

Moreover, learners need a case base to start making sense
of what they are about to learn. If they don’t have it, it’s
hard to get started. The PoliFacets is an analysis tool,
which can perhaps be usefully explored at the early stages
of CTA programming, exercising the conditions and
consequences of selected modifications of an initial game
state (as in the scenario of our experiment). Querying The
PoliFacets and inspecting game examples can help
students to “bridge the gap”, as one participant put it,
when they have to begin to build their own game or
simulation.

Developing Abstraction skills and mastering how this can
be used in programming is fundamental to CTA. The
PoliFacets may help the learning process if the teacher
uses it to show examples of how concepts come back again
and again in various documented projects. Nevertheless,
we are far from being able to communicate game and
programming patterns used in AgentSheets, in particular as
they have been defined in [1]. We still need to improve
considerably our natural-language generation features
before we can begin to make more relevant contributions
on this front.

We can, however, deal with communication simple
abstraction patterns, like the difference between a class-
level and depiction-level agent behavior specifications. In
Figure 6, we can see an example of how AgentSheets
communicates this difference by selecting agent depictions
(instance-level specification) versus agent names (class-
level specification). As mentioned in the beginning of this
paper, Pacman has four depictions, which vary according
with movement orientation. So, if learners don’t realize that
some behavior is independent of orientation, they may

never make the abstraction leap from using depictions to
using names in rule specifications.

Figure 6. See and See a AgentSheets rules

Figure 7. Class Vs depiction

Natural language descriptions of rules in The PoliFacets
mark different levels of generality in rule descriptions by
using iconic signs (Figure 7B) in case of instance-level
specifications versus symbolic signs (Figure 7A) in case of
class-level specifications. This semiotic regularity is
designed to inferences about different levels of
abstractions. However, we do not have empirical data yet
to tell whether our message gets across to users or doesn’t.

About the Program Execution Logic, the only way that The
PoliFacets has addressed this issue is by enumerating the
rules in the same order as conditions will be tested. This is
however a very primitive approach, especially in view of
interactions with the interpretation of logic conjunction and
disjunction during rule testing. We know we have a lot of
work to do in this direction, but first we must collect
reliable data from learners in order to understand what
interpretations they typically generate to explain game
behavior. Only in view of such empirical data can we have
some hope of producing explanations that will elaborate on
users’ meanings rather than imposing our own.

In spite of shortcomings, the gist of our design intent with
The PoliFacets was recognized by this study’s participants.
They clearly saw the value of alternative and enriched
representations of the game structure and conversations
about it. They also seem to have grasped and enjoyed the
essence of active documentation in the way we designed
and implemented it.

As a complement in discussing the results of out research,
we also contrast and compare The PoliFacets with other
approaches proposed in previous related work. For
example, there have been proposed strategies to address the
difficulty of many students in getting started with the CTA
process. One approach was to engage students in a broader

To appear in the Proceedings of IHC2012 Author's Copy

8

interdisciplinary context. Jones and co-authors [11]
explore the teaching of introductory programming with
creative writing. In it pairs of students start organizing and
writing a detailed story that triggers the programming
process. Their research recognizes and values the creative
nature of programming. In the authors’ words: “creativity
first, programming second.” This is interesting because The
PoliFacets also resorts to writing, although to automatic
writing (the program-generated textual descriptions of
game logic) and somehow in reverse order (programming
with AgentSheets first, writing second). However, as
already mentioned, textual descriptions can be used in
different ways, one of which being to challenge learners to
produce AgentSheets programs that comply to descriptions
given in The PoliFacets. Even if the creativity factor is not
emphasized in our context yet, the semiotic infrastructure is
in place for further research in this direction.

Basawapatna and co-authors [2], doing work with
AgentSheets, investigated how feedback happens in the
context of students using cyber learning and physical
infrastructures. Their findings suggest that students
preferred to give feedback verbally in-person during class
than to register it virtually. In comparison, we can say that
The PoliFacets was conceived to support activity both
inside and outside the class room. Thus feedback about
game projects can happen in both contexts. An interesting
possibility, springing from Basawapatna’s work is to trace
how feedback loops occur (and possibly migrate) across
the two environments.

A study by VanDeGrift [22] also explores the use of pair
programming coupled with writing and talks about the
advantages of this strategy. We should mention in this
respect that we saw in our study some discomfort among
the T2B participants with the possibility of students being
able to inspect each other’s games. As P1 put it: “[they]
tend to copy a lot, and then [all] you have sometimes is a
copy of somebody else’s game. The guy had no idea [in
mind], he just looked up and started doing the same thing
[as somebody else did]”. They are concerned that The
PoliFacets might encourage copying rather than thinking.
We find that this is probably because of their lack of
experience with programming practices, which heavily rely
on program sharing, reuse, etc. It may actually be a good
thing if students look at some game representation (that is
different from AS code) in The PoliFacets and copy it into
their AgentSheets games. In particular, because of
representational variations, this will develop good
computational thinking skills in addition to introducing
them to wide-spread program development practices. In
future, it would be an interesting aspect to investigate. But,
we believe that our active documentation approach
somehow goes in the same directions as suggested by
VanDeGrift, although we are not specifically
contemplating pair-programming; we are actually
contemplating group collaboration through program
sharing.

Bennedsen and Caspersen [3] found that recordings of
narrated programming sessions, in a kind of verbal protocol
style, can be a simple, cheap and efficient way to help
students improve program understanding abilities. This
view was reinforced by other research by Matthíasdóttir
[14]. The PoliFacets doesn’t follow the idea of capturing
verbal protocols during programming activity, but as
already mentioned the semiotic infrastructure for
generating augmented representations of programs can
bring in certain signs that trigger the same kinds of
inferences as those triggered by narratives of programming
activity. The difference is, once again, the reflection in
action compared to the reflection on action approach as
defined by Schön [20]. The PoliFacets is clearly committed
with the latter.

CONCLUSIONS AND FUTURE WORK
We conclude this paper with the answer we got from
participants when we asked them how they would define
The PoliFacets. All participants talked about enhanced
visibility. T2B participants mentioned that the system lets
you see all the details more closely, like a zoom.
AgentSheets Instructor P5 mentioned the ability to “see
hidden details of the worksheet” and P4 said that “The
PoliFacets is a complementary tool that aims to explain
parts which are not self-explanatory”, not obvious or easily
seen. These answers make us believe that we are on the
right track and that The PoliFacets does bring about an
important expansion of program-related signs from which
computational thinking skills can be taught and learned.

Our goal is not to generalize results, propose methods or
best practices and advices. Our scientific contribution is a
different kind of help system using live documentation and
it could be explored in other contexts. Our findings also
showed that although our system has not yet completely
fulfilled our design intent, it has led participants to gain
relevant insights about their teaching and learning, as well
as to articulate doubts and misunderstandings that could
have otherwise gone unnoticed.

We are thus encouraged by these results, especially by T2B
participants’ realizations that some of the problems that had
faced could have been easily solved if they had used The
PoliFacets in the first place. We conclude that our piece of
active documentation, along with its design rationale and
strategy, holds the promise of being useful in CTA
contexts.

After we finished this research, we implemented many of
the suggested improvements in The PoliFacets. However,
there is a lot of room for further enhancements and
research. We intend to begin with further empirical studies,
looking at how this tool is actually used by teachers and
learners in actual CTA activity. Some of our currently
targeted research questions have to do with the automatic
generation of more complex verbal explanations and
descriptions of the game structure and plot. We will also be
working with language and writing middle school teachers

To appear in the Proceedings of IHC2012 Author's Copy

9

to explore the possibilities of interdisciplinary educational
strategies inspired by related work mentioned in the
previous section. One of the long-range targets we hope to
hit with this is to couple the development of computational
thinking skills with that of reading and writing skills
required for full-fledged functional literacy.

ACKNOWLEDGMENTS
We thank the participants of our study as well as CAPES
and FAPERJ for granting financial support to this research.

REFERENCES
1. Basawapatna, A., Koh, K. H., Repenning, A., Webb D.

C., Marshall, K. S. 2011. Recognizing computational
thinking patterns. SIGCSE’11. ACM, USA, 245-250.

2. Basawapatna, A. R; Repenning A. 2010. Cyberspace
meets brick and mortar: an investigation into how
students engage in peer to peer feedback using both
cyberlearning and physical infrastructures. ITiCSE’10.
ACM, USA, 184-188.

3. Bennedsen, J.; Caspersen M. E. 2005. Revealing the
programming process. SIGCSE ACM, USA, 186-190.

4. Bicharra, A. C. 1992. Active Design Documents: A
New Approach for Supporting Documentation in
Preliminary Routine Design. Ph.D. Dissertation.
Stanford University, USA.

5. De Souza, C. S. 2005. The Semiotic Engineering of
human-computer interaction. Cambridge, Mass.: The
MIT Press. “Omitted for blind refereeing”

6. De Souza, C. S., Garcia, A. C. B., Slaviero, C., Pinto,
H.,; Repenning, A. 2011. Semiotic traces of
computational thinking acquisition. EUD’11, Berlin,
155-170. “Omitted for blind refereeing”

7. Ferreira, J. J., De Souza, C. S., Salgado, L. C. C.,
Slaviero, C., Leitão, C. F., Moreira F. 2012.
Combining cognitive, semiotic and discourse analysis
to explore the power of notations in visual
programming. VL/HCC’12. Submission accepted.
“Omitted for blind refereeing”

8. Fischer, G.; Lemke, A. C.; Mastaglio, T. & Morch, A.
I. 1990. Using critics to empower users. CHI’90.
ACM, 1990, 337-347.

9. Fischer, G. 1999. Symmetry of igorance, social
creativity, and meta-design. CC’99, ACM, 116-123.

10. Johnson, W. L.; Erdem, A. 1997. Interactive
Explanation of Software Systems. Automated
Software Engineering. Springer Netherlands, 4, 53-75.

11. Jones, M. E., Kisthardt, M.; Cooper, M. 2011.
Interdisciplinary teaching: introductory programming
via creative writing. SIGCSE’11. ACM, USA, 523-
528.

12. Lazar, J., Feng, J. H., Hochheiser, H. 2010. Research
methods in human-computer interaction. New York:
Wiley.

13. MacLean, A.; Young, R. M. & Moran, T. P. 1989.
Design rationale: the argument behind the artifact.
CHI’89. ACM, 247-252.

14. Matthíasdóttir, Á. and Geirsson, H. J. 2011. The
novice problem in computer science.
CompSysTech’11. ACM, USA, 570-576.

15. Maybury, M. T. 1994. Knowledge-based multimedia:
The future of expert systems and multimedia, Expert
Systems with Applications, Volume 7, Issue 3, 387-
396.

16. Novick, D. G., Elizalde E., and Bean N. 2007. Toward
a more accurate view of when and how people seek
help with computer applications. SIGDOC’07. ACM,
USA, 95-102.

17. Phelps, L. 1997. Active documentation: wizards as a
medium for meeting user needs Proceedings of the
15th annual international conference on Computer
documentation, ACM, 1997, 207-210.

18. Repenning, A. 2011. Conversational programming in
action. Visual Languages and Human-Centric
Computing. IEEE Symposium, pp.263-264, 18-22.

19. Repenning, A.; Ioannidou, A. 2004. Agent-Based End-
User Development. Communications of the ACM.
Vol. 47, 43-46.

20. Schön, D. A. (1983). The reflective practitioner: How
professional think in action. New York: Basic Books.

21. Silveira, M. S., De Souza, C. S., Barbosa, S. D. J.
2001. Semiotic engineering contributions for designing
online help systems. In Proceedings of the 19th annual
international conference on Computer documentation.
ACM, USA, 31-38. “Omitted for blind refereeing”

22. VanDeGrift, T. 2004. Coupling pair programming and
writing: learning about students' perceptions and
processes. SIGCSE’04. ACM, 2-6.

23. Welty, C. J. 2011. Usage of and satisfaction with
online help vs. search engines for aid in software use.
SIGDOC’11. ACM, New York, USA, 203-2

To appear in the Proceedings of IHC2012 Author's Copy

10

