
 

Technical Report 
Combining semiotic and cognitive 

perspectives to evaluate software interaction design  
Cognitive Dimensions of Notation framework and 

Metacommunication Template analysis 
Collected Data - IBM RSA 

 

Juliana Jansen Ferreira, Clarisse Sieckenius de Souza 
SERG/Informática – PUC-Rio 

R. Marquês de São Vicente 225 Rio de Janeiro – RJ, Brasil 
[jferreira, clarisse]@inf.puc-rio.br 

 
Renato Cerqueira 

IBM Research Brazil 
Avenida Pasteur 138 - Rio de Janeiro - RJ, Brasil 

rcerq@br.ibm.com 
 
 

 

Abstract 

We have developed a Combined Semiotic-Cognitive method (CSCmethod) to evaluate 

software interaction design because we believe that an inspection combining both 

perspectives provides more comprehensive and powerful results compared to when we 

use semiotic and cognitive evaluation methods separately. Originally, the CSCmethod 

combined the Semiotic Inspection Method (SIM), which evaluates the communicability 

of interaction design, and an analysis based on the CDN framework (CDNf), which 

evaluates design usability. The original combination produced insightful results 

regarding both usability and communicability issues. Recently, however, we have been 

asking ourselves further questions. For example, does the order of execution matter? 

Could a “light version” of SIM be used in the combined method? This report presents a 

detailed account of the data and the evaluation process, using what we called “SIM 

light”, instead of the complete version of the method. We evaluated a popular software 

modeling tool, namely IBM RSA. The report includes the complete set of raw data used 

in the combined evaluation, which is also the one used for the analysis reported in a 

paper published in the proceedings of the13th Brazilian Symposium on Human Factors 

in Computing Systems (IHC 2014).(Ferreira et al., 2014) 

 



 

Summary 

1. Introduction ................................................................................................ 3 

2. The Semiotic-Cognitive combined evaluation method .............................. 3 

2.1. The Cognitive Dimension of Notation framework (CDNf) .................... 4 

2.2. Metacommunication Template (MetacommT) ....................................... 5 

3. The Evaluation methodology...................................................................... 6 

3.1. TNP baseline definition .......................................................................... 6 

3.2. Cognitive analysis with CDNf ................................................................ 8 

3.3. Semiotic analysis with MetacommT ....................................................... 8 

3.4. TNP triplet characterization .................................................................... 9 

4. Evidence collected during evaluation ......................................................... 9 

4.1. Decision node connected to itself ......................................................... 10 

4.2. Initial node directly connected to a final node ...................................... 11 

4.3. A ‘too quick’ notification about an incorrect connection ..................... 12 

4.4. Visual ambiguity ................................................................................... 13 

4.5. Modeling or drawing tool? ................................................................... 15 

4.6. Visual distinction between modeling and drawing elements ................ 17 

4.7. Activity model without activity ............................................................ 19 

4.8. Element size and element text .............................................................. 20 

4.9. Confusing help content – Interface language vs. local language .......... 21 

4.10. Confusing help content - Path does not exist! ................................... 23 

4.11. Objects need constant refitting .......................................................... 24 

4.12. The Metacommunication template filled up ..................................... 26 

5. TNP triplet characterization...................................................................... 27 

6. UML activity model produced ................................................................. 29 

References ........................................................................................................... 30 

 

 



3 
 

1. Introduction 

The combination of usability-driven and communicability-driven perspectives 

enables a more comprehensive inspection of relevant interactive aspects of software 

artifacts, as well as the relations between them. For this study, we selected the Cognitive 

Dimension of Notation framework (CDNf) (Green and Blackwell, 1998) (Blackwell and 

Green, 2003) as our usability-driven inspection tool, and the Metacommunication 

Template (MetacommT) as our communicability-driven one. The latter is a basic 

common step in two much more elaborated methods proposed by Semiotic Engineering, 

namely the Semiotic Inspection Method and the Communicability Evaluation Method. 

(de Souza and Leitão, 2009) 

The evaluation proposed and took the tool-notation-people triplet as a reference, 

from the preparation to the final analysis phases. In the preparation phase, we selected 

the software tool to be inspected, the “T” part of the triplet. At this early stage, the tool 

is not fully characterized. The “N” and “P” parts are likewise only loosely defined, in 

general terms (e. g. “N” is UML, “P” represents the requirement engineers).  Together 

the three parts (T, N and P) define the triplet baseline for the inspection. Later in the 

analysis phase, we will have learned more about the “T”, “P” and “N”. Thus, we can 

then build a complete characterization of the triplet for a specific inspection scenario 

that directs the entire study. 

The inspected tool was IBM RSA, a popular modeling tool in software 

development. In the next sections we provide details of the evaluation study’s settings 

and procedures, as well as the cognitive and semiotic evaluation techniques stemming 

from CDNf and Semiotic Engineering methods. 

2. The Semiotic-Cognitive combined evaluation method 

In this section we provide details about CDNf and the use of the 

metacommunication template (MetacommT), which is a fundamental piece of the 

Semiotic Inspection Method and the Communicability Evaluation Method. 



4 
 

2.1. The Cognitive Dimension of Notation framework (CDNf) 

The Cognitive Dimension of Notation framework is defined as set of design 

principles for creating or evaluating notations, user interfaces and programming 

languages used with information artifacts (Blackwell and Green, 2003). They provide a 

common vocabulary for discussing many cognitive factors of such representation 

systems. Their aim is to improve the quality of discussions and decisions in design and 

evaluation activities. (Green and Blackwell, 1998) There are fourteen dimensions in the 

CDN framework as shown in Table 1. 

Table 1. List of CDN (Blackwell and Green, 2003) 

Cognitive Dimension of 

Notation 
Description 

Abstraction Types and availability of abstraction mechanisms 

Closeness of mapping Closeness of representation to domain 

Consistency Similar semantics are expressed in similar syntactic forms 

Diffuseness Verbosity of language 

Error-proneness The notation invites mistakes and the system gives little protection 

Hard mental operations High demand on cognitive resources 

Hidden dependencies Important links between entities are not visible 

Premature commitment Constraints on the order of doing things 

Progressive evaluation Work-to-date can be checked at any time 

Provisionality Degree of commitment to actions or marks 

Role-expressiveness The purpose of an entity is readily inferred 

Secondary notation Extra information in means other than formal syntax 

Viscosity Resistance to change 

Visibility Ability to view components easily 

 



5 
 

There are several steps to be taken when applying Cognitive Dimensions 

analysis to a system’s design:  

(1) get to know your system;  

(2) decide what the user will be doing with the notation;  

(3) choose some representative tasks;  

(4) for each step in each task, ask whether the user can choose where to start; 

how a mistake will be corrected; what if there are second thoughts; what abstractions 

are being used; and so on, for all dimensions. These steps will generate an observed 

profile; and  

(5) compare the observed profile with the ideal profile for that type of activity.  

2.2. Metacommunication Template (MetacommT) 

MetacommT is used to guide communicability investigation, from either a 

sender’s or a receiver’s perspective, by providing an abstract and logically articulated 

representation of the designers’ discourse about their understating of who the users are 

(what needs and preferences they have, what may be their goals and expectations, their 

abilities, their knowledge, etc.) as well as the design decisions and choices that 

ultimately express their design intent (and its expected value for the targeted users). (de 

Souza and Leitão, 2009) The content and structure of MetacommT is: 

“Here is my understanding of who you are, what I’ve learned you want or 

need to do, in which preferred ways, and why. This is the system that I have, 

therefore, designed for you, and this is the way you can or should use it in order to 

fulfill a range of purposes that fall within this vision.” (de Souza, 2005) 

The first person of discourse in the template (referred to as “I”, “my”) stands for 

the designer, and the second (referred to as “you”, “your”) stands for the user. The third 

person in discourse (referred to as “it”, “this”) stands for the system, represented by its 

interface. Together, they characterize the participants in an elaborate 

metacommunication process that takes place during human-computer interaction: user 

and designer. 



6 
 

3. The Evaluation methodology 

We performed four steps (Figure 1) to execute the combined evaluation, using 

the TNP triplet as reference thought out all the steps: 

 

Figure 1. Combined evaluation with TNP triplet 

3.1. TNP baseline definition 

The TNP baseline is the reference for the entire evaluation. SIM (de Souza and 

Leitão, 2009), like most other evaluation methods, takes a baseline configuration in the 

“preparation phase”, which may be implicit in evaluation scenarios and tasks or explicit 

as an evaluation component in itself. Since the TNP baseline will guide our evaluation, 

we highlight its importance by making it a separate step of our combined method. 

3.1.1. Selected tool and modeling notation  

We chose IBM Rational System Architect (IBM RSA)
1
 as the tool for our 

evaluation study. IBM RSA is a well-known software modeling tool selected because it 

features as one of the top modeling tools in the Gartner Magic Quadrant of Enterprise 

Architecture tools
2
 used by the software engineering industry. 

In order to focus the inspection on the modeling activity itself, the necessary 

steps to establish a “project” or “environment”, which the modeling tool requires, were 

not part of the evaluation scenario. Thus, we started from projects or folders which we 

assumed had been previously created with IBM RSA. 

We selected the Unified Modeling Language (UML) (OMG, 2014) as the 

modeling notation for the inspection because UML is the most used modeling notation 

in software development projects. Regarding the type of model to work with, we chose 

                                                

1
IBM Rational System Architect  (IBM RSA) trial 8.0.4, 

https://www.ibm.com/developerworks/rational/products/rsa 
2
 Gartner Group - https://www.gartner.com/doc/2601526 



7 
 

the activity model notation because it helps create a kind of “boundary model” between 

the business and the technology portions of the system being developed. It can be used 

to model more abstract activities (like interactions between system and users or between 

systems), as well as to model specific object parts of the system itself, showing how 

they change along the process and over time. 

3.1.2. User profile 

The user profile defined for this study is that of an active professional in 

business modeling, requirements modeling and conceptual modeling. However, we 

assumed that this user had never used the selected tool and had little experience with 

UML activity models in real projects. All he knew about them was what he had learned 

in professional training and education some time ago 

3.1.3. Evaluation scenario 

The selected scenario describes a commonly encountered situation in a 

development project, that of a new IT professional joining a software development team 

and having to collaborate with others right away. 

The scenario professional joins the IT team of a company to work in the 

development project of a new HR system. This professional will participate in the 

specification phase of the project, interacting with the client and other IT team members 

while defining the business domain related to the software under development. 

The professional is not familiar with the modeling tool used by his new 

colleagues, so the team manager gives him a special task with which he will get 

acquainted with the tool. He should build an activity model for a “Vacation request 

process”, using previously collected data with annotations. The model is to be used in 

conversations with clients as well as with other IT team members. 

The final model should represent the sequence of activities of the “Vacation 

process request” for a given corporation, including the following sequence of tasks: 

1. The employee fills out a vacation request form and submits it to the HR 

system. 

2. The HR system checks if there are conflicting vacation dates scheduled for 

the same period. Conflicts arise when two or more people ask to be absent 

from the company at the same time. Normally people who work in the same 

sector of a company are each other’s backup (peers). 

3.a. If there are no conflicting vacation dates, the HR system sends the vacation 

request to the Manager to review and approve it. 



8 
 

3.b. If there are conflicting vacation dates, the HR system informs the conflict 

to the employee who can then propose new dates to avoid the conflict or , 

alternative, to negotiate the desired vacation period with his colleagues. 

 If an employee wants to negotiate dates with a colleague, he 

sends him or her a message through the system, asking about 

alternative dates. 

 The peer can accept or reject this proposal.   

 The manager receives the new vacation request and reviews it. 

4.a.  If the manager agrees with the request without any comments or 

adjustments, the manager approves the request. Then the HR system notifies 

the HR vacation handler that an approved vacation needs scheduling and 

also notify the employee about the approved vacation request. 

4.b. If the manager does not agree with the request, he writes a comment on 

the request form and sends it back to the employee for review.  

3.2. Cognitive analysis with CDNf 

In this step, while executing the proposed task of the evaluation scenario, we 

carry out the cognitive analysis by inspecting the interface and supported interactions of 

IBM RSA. During the inspection, we identified a number of HCI issues and associated 

each one of them with cognitive dimensions, according to the observed characteristics. 

We also used the TNP triplet baseline as reference for the identification of such issues, 

relating them to “T”, “N”, “P” or a combination of these factors. The evidence collected 

to illustrate each one of the issues is presented in the section 4, below.  

3.3. Semiotic analysis with MetacommT 

In this step, we filled out the Metacommunication template (MetacommT) taking 

into consideration what we learned during the previous step, with the CDNf analysis. 

Then, we carried out an analysis of the designer-to-user metacommunication through 

interface and interaction signs in order to fill out the details of the metacommunication 

template proposed by Semiotic Engineering (see on page 5). We divided MetacommT 

in four segments as a means to categorize the issues identified during the 

metacommunication inspection: 

1. “Here is my understanding of who you are, …” 

2. “…what I’ve learned you want or need to do, in which preferred ways, 

and why….” 



9 
 

3. “…This is the system that I have, therefore, designed for you, and this is 

the way you can or should use it…” 

4. “…in order to fulfill a range of purposes that fall within this vision.” 

3.4. TNP triplet characterization 

The TNP triplet characterization is the step in which we resort to the TNP triplet 

baseline and take it as the “ideal situation” in terms of which to discuss the issues 

identified during the inspections.   We discuss each part of the triplet in each and every 

context where a cognitive or a semiotic issue was detected in previous steps of the 

combined evaluation procedure. We relate each issue to one or more of the factors (T, N 

or P) or to one or more of the relations among them. For example, if the tool misleads 

the user in his or her use of the notation, this issue has to do with T, N and P. If the tool 

resizes and redraws model elements, without any explicit request from the user, and this 

leads to user disorientation, this issue has to do with T and P, only. 

4. Evidence collected during evaluation 

In this section, we present the raw data collected during the combined 

evaluation. Notice that, as is the case with interpretive methods in general, in our 

proposed method data is “constructed’ by the analyst. In other words, it is the analyst’s 

interpretation of a contingent configuration of his or her object of interest that 

determines whether this is a piece of data for investigation. For example, the resizing 

illustration mentioned in the last paragraph of the previous section may or may not 

constitute a piece of evidence in the analyst’s view. It is his or her judgment about the 

causes/consequences of the resizing for the user that will ultimately tell if this will count 

as ‘raw data’ for ulterior steps of analysis.  

In this report we presented all the pieces of evidence, and related issues, which 

we identified throughout the combined cognitive-semiotic evaluation. In the paper 

where we discussed this research (Ferreira et al. 2014), for lack of available space in 

conference paper format, we mentioned only a few of the most evocative issues. 



10 
 

4.1. Decision node connected to itself 

IBM RSA allows for an activity model to have a decision node connected to 

itself (see Figure 2). This notational configuration refers to a loop that can never be 

solved, because there isn’t any action to define where the activity flow will go after the 

decision is made. This association does not represent a proper model configuration, 

since no activity or action is assigned to the system (it doesn’t act in any way). 

 

Figure 2. A decision node associated with itself 

 

CDNf notes: Although this feature relates to an important cognitive 

dimension in usability terms, namely Progressive 

evaluation (the ability to produce incomplete 

representations that are incrementally composed along the 

modeling process, in our case), it does so in such a way that 

a usability problem is entailed by the interaction designers’ 

solution. Because there is no distinction between provisional 

representations to be further specified and definitive 

representations that express the modeler’s final decision, 

this IBM RSA feature is also associated with another 

cognitive dimension of notations, namely Error-proneness. 

The notation invites mistakes and the system gives little 

protection against them. IBM RSA allows the user to use the 

UML notation to build connections that do not have a 

meaning considering a model as a whole. A decision node 

connected to itself characterizes a loop that does not have a 

solution. The user building the model (“P”) can be misled 

by “T”, while using “N”. 

MetacommT 

notes: 

“Here is my understanding of who you are…” 

“I understand that you have a fair amount of experience 

with modeling and the UML activity model notation…”  

IBM RSA designers somehow excuse themselves for not 

providing explanations further information about UML. 



11 
 

Therefore, we can assume that in the designer’s view, this is 

not a critical need of the users (or else they should have 

included this matter in their tool). 

“…what I’ve learned you want or need to do, in which 

preferred ways, and why.”  

You may wish to build models incrementally, which means 

that some intermediary stages in the process may be 

obviously wrong from a UML semantics perspective.  

“…This is the system that I have therefore designed for 

you, and this is the way you can or should use it…”. 

“Therefore, the system doesn’t check the semantics of the 

model all the time and trust you to be able to track where 

the evolving model needs to be elaborated further in order 

to be semantically correct. We provide a semantic 

verification, but it is not complete. Only a subset of 

connections can be checked, and you will find this by trial 

and error. “ 

4.2. Initial node directly connected to a final node 

In IBM RSA an activity model can be represented with an initial node directly 

connected to a final node (see Figure 3). This connection does not have a proper 

meaning, considering that the user cannot build an activity model without any activity. 

 

Figure 3. Initial node connected to a final node 

 

CDNf notes: The CDN Progressive evaluation, the ability to produce 

incomplete representations that are incrementally composed 

along the modeling process, in our case, and CDN Error-

proneness, which means that the notation invites mistakes 

and the system gives little protection against them, can be 

associated with this issue. This is another situation similar to 

the previous issue described. Considering the user profile, 

someone who does not have much experience with the UML 



12 
 

notation, the “progressive evaluation” feature may lead to 

“Error-proneness”. 

MetacommT 

notes: 

“Here is my understanding of who you are…” 

“I understand that you have a fair amount of experience 

with modeling and the UML activity model notation…”  

IBM RSA designers somehow excuse themselves for not 

providing explanations further information about UML. 

Therefore, we can assume once again that in the designer’s 

view this is not a critical need of the users (or else they 

should have included this matter in their tool) 

“…what I’ve learned you want or need to do, in which 

preferred ways, and why.”  

You may wish to build models incrementally, which means 

that some intermediary stages in the process may be 

obviously wrong from a UML semantics perspective.  

 

“…This is the system that I have therefore designed for 

you, and this is the way you can or should use it…”. 

“Therefore, the system doesn’t check the semantics of the 

model all the time and trust you to be able to track where 

the evolving model needs to be elaborated further in order 

to be semantically correct. We provide a semantic 

verification, but it is not complete. Only a subset of 

connections can be checked, and you will find this by trial 

and error. “ 

4.3. A ‘too quick’ notification about an incorrect connection 

A prohibition sign () quickly flashes when the user tries to make an incorrect 

association between elements (see Figure 4). If the user is not paying close attention, or 

is moving the mouse rapidly across the interface display, the feedback about the mistake 

may not be noticed. As a result, he may be left wondering why the association is not 

being done. 



13 
 

 

Figure 4. Prohibition sign while trying to connect a final to a initial node 

 

CDNf notes: This characteristic is related to two cognitive dimensions in 

CDNf: Visibility (the visual feedback is not visible enough) 

and Diffuseness, which refers to how many symbols (or 

how large a representational space) the notation requires to 

express meaningful content. Only that one quick sign 

indicates to the user that what he is trying to do is not 

allowed by the tool. 

MetacommT 

notes: 

“…what I’ve learned you want or need to do, in which 

preferred ways, and why.”  

“… you need to build activity models with some help to 

prevent incorrect connections. And you are constantly 

paying close attention to all screen states in the system’s 

interface.” 

 

“…This is the system that I have therefore designed for 

you, and this is the way you can or should use it…”. 

“Therefore, the system will help you by not allowing you to 

make some incorrect connections. Since you clearly just 

slipped-up about the incorrect connection, I don’t need 

make a big deal about it. You will quickly notice what you 

are doing wrong.” 

4.4. Visual ambiguity 

In Figure 5 we show two different elements with the same visual representation: 

Decision and Merge nodes. UML actually assigns the same representation to these two 

elements, but we would expect that a modeling tool (designed to support modelers) 

should use the opportunity to call the users’ attention to the problem visually. According 

to UML, the behavior of Decision and Merge nodes is different: only one flow can 

arrive at a Decision node and only one flow can come out of a Merge node. The user 



14 
 

will only realize that distinction if he clicks on each element to see its properties. IBM 

RSA also communicates that distinction by implementing the “one flow rule” 

mentioned before, but the way this communication is performed, the user might not 

understand the difference. If the user tries to add a 2
nd

 flow arriving at a Decision node, 

IBM RSA will create a flow leaving the decision node. It is like saying: “My dear user, 

I believe you made a mistake! What you really wanted was to add a flow leaving the 

Decision node. Therefore, I changed the direction of the flow you added.” The message 

seems fine, but IBM RSA does not really notify the user, it simply changes the flow 

direction and this action looks just as quick as the prohibition sign in the previous issue. 

The user could easily miss the “message”. 

 

Figure 5. Decision and Merge nodes 

 

CDNf notes: We can see two different elements with the same visual 

representation: merge and decision nodes. This can be 

associated with CDN Visibility. Although this is a problem 

with UML, the designer could have used this opportunity to 

call the users’ attention to the problem visually. According 

to UML, the behavior of ‘Decision’ and ‘Merge’ nodes is 

different in that only one flow can arrive at a decision node 

and only one flow can come out of a merge node. IBM RSA 

helps the user by not letting him exceed the limit of flows. 

However the way it communicates this to the user (by not 

allowing in or out connections depending on which is the 

case) may be very confusing to the user who realizes that 

some connections are not allowed, but misses the reason 

why this is happening. This issue can also be related to 

another CDN, Hard mental operation (a high demand on 

cognitive resources for the user to understand the notation 

system) if we consider that for proper interaction the user 

must be able to handle visual ambiguities in the notation and 

keep mental track of which is the case at every instance of 

occurrence. 

MetacommT “…what I’ve learned you want or need to do, in which 

preferred ways, and why.”  



15 
 

notes: “… you need some help to prevent incorrect connections 

while building your models. 

“…This is the system that I have therefore designed for 

you, and this is the way you can or should use it…”. 

“Therefore, the system will help you by correcting some 

incorrect connections that you may try to execute. Since you 

clearly just slipped-up about the incorrect connection, I 

don’t need to alert you about it. The system makes it all ok 

and you can go on modeling.” 

4.5. Modeling or drawing tool? 

IBM RSA provides the usual resources that tools dealing with visual 

representations typically incorporate (e. g. arrange and align forms), as well as other 

drawing functions, such as sketched and geometric shapes (see Figure 6). Likewise, 

IBM RSA implements some (although not all) of the UML constraints for the activity 

model. The tool explicitly provides a function called “UML model validation” (see 

Figure 7). 

In its help content, IBM RSA states that it “supports UML 2.2” and refers the 

reader to the OMG website for more details (Figure 8). In other words, IBM RSA 

decides to hand over the task of providing notational definitions and explanations to the 

organization that maintains UML (OMG).  

 

Figure 6. IBM RSA Palette 

 

Figure 7. IBM RSA UML validation 

 



16 
 

 

Figure 8. IBM RSA help item about OMG UML specification 

 

CDNf notes: Having an unexperienced UML notation user in mind, the 

freedom to switch between modeling and drawing functions 

while building a model may make it difficult to identify 

potential problems regarding the final model’s compliance 

with UML standards. The CDN Hard mental operations 

(A notation can make things complex or difficult to work 

out in your head, by making inordinate demands on working 

memory, or requiring deeply nested goal structures.) is a 

cognitive characteristic related to this issue. The user 

building the model will need to have some previous 

knowledge of the notation in order to build a “correct” UML 

model that other people can understand and use in 

subsequent stages of software development. 

MetacommT 

notes: 

“…what I’ve learned you want or need to do, in which 

preferred ways, and why.”  

“You may wish to build models incrementally, which means 

that some intermediary stages in the process may be 

obviously wrong from a UML semantics perspective. We, 

therefore, don’t check the semantics of the model all the 

time, and trust you to be able to track where the evolving 

model needs to be elaborated further in order to be 

semantically correct …” 

The designer transfers the responsibility about UML 

specification to OMG, indicating that it only “supports 

UML 2.2”, but further information is someone else’s  

responsibility, as shown in Figure 8. 

 

“…This is the system that I have therefore designed for 

you, and this is the way you can or should use it…”. 

“So, you can build a visual representation of the model and 

invoke a semantic verification function to check the 

correctness of your model at any time. The semantic 



17 
 

verification is not complete, however. Only a subset of 

connections can be checked, and you will find this by trial 

and error. …” 

 

4.6. Visual distinction between modeling and drawing elements 

As discussed and shown in the previous item, IBM RSA provides modeling and 

drawing resources to users. The elements have different goals and also distinct 

appearances, which is a positive feature. Some elements may have similar forms, as 

shown in Figure 9, but the perceivable differences in form help the user realize that 

there must be differences in their meaning or use, as shown in Figure 10. This difference 

might be a good way to alert the user about the availability of different kinds of 

representations which are actually provided by IBM RSA. We are, in this case, pointing 

at an emerging rhetoric of representations, which the tool might more actively support, 

that is, communicate more explicitly to the user when and why use one type of 

representation and not other(s). 

 

Figure 9. Sketch, UML and Geometric elements 

 



18 
 

 

Figure 10. Different kind of elements connected, but caught by UML validation 

 

CDNf notes: The CDN Consistency, which states that similar semantics 

should be expressed in similar syntactic forms, can be 

related to this evidence. The distinct appearance of each 

element provides the user with enough information to 

realize that IBM RSA deals with different (rhetorical) kinds 

of elements.  

On the other hand, because the user can associate elements 

from different (rhetorical) types, we can also relate the CDN 

Error-proneness with this piece of evidence. Of course this 

may be a pragmatic error, like writing a letter that uses 

highly formal speech and street jargon in the same piece of 

communication. IBM RSA allows the user to connect 

various kinds of notational elements and save the model as a 

(supposedly valid) UML activity model. If, by his own 

initiative, the user subsequently runs the UML model 

validation, IBM RSA will issue some alerts for semantically 

questionable parts of the model, but not for connections 

between elements from different (rhetorical) kinds. In 

Figure 10, the drawn edge (oblique arrow shape joining a 

sketched diamond and a UML decision node may have been 

meant, by the unexperienced user, as an incoming edge. 

However, according to the error message we see in Figure 

10, there are no incoming edges to that decision node. 

MetacommT 

notes: 

“…what I’ve learned you want or need to do, in which 

preferred ways, and why.”  

“You may wish to build models incrementally, which means 

that some intermediary stages in the process may be 

obviously wrong from a UML semantics perspective. To this 

end, you may wish to use different styles of shapes, with 

which you annotate things that you must take care of in 

more detail as you make progress in the modeling task.” 

“…This is the system that I have, therefore, designed for 



19 
 

you, and this is the way you can or should use it…” 

“Since you may need some intermediary representation of 

the UML activity model, we allow you to use different types 

of representation (geometric, UML, sketch. Some 

connections between elements of different types are 

allowed, but some UML constraints are still been checked 

while modeling and you will find this by trial and error. …”  

4.7. Activity model without activity 

IBM RSA allows the user to build a “valid” activity model without any activity 

node in it, as shown in Figure 11. The UML specification (OMG, 2014) states that an 

activity model must have at least one activity node. However, IBM RSA allows the user 

to save that model as is without any warning. More importantly, the tool provides a 

“UML model validation” function that does not indicate any problem with the model, as 

shown in the encircled area of Figure 11: 

 

Figure 11. Activity model without activity  

 

CDNf notes: Issue referring to Error-proneness, which means that the 

notation invites mistakes and the system gives little 

protection. IBM RSA does not provide any help for users 

during modeling activity regarding the validity of the 

activity model being built.  

MetacommT 

notes: 

“…what I’ve learned you want or need to do, in which 

preferred ways, and why.”  

“You may wish to build models incrementally, which means 

that some intermediary stages in the process may be 

obviously wrong from a UML semantics perspective.” 

“…This is the system that I have, therefore, designed for 



20 
 

you, and this is the way you can or should use it…” 

“Therefore, the system will not highlight every semantic 

mistake, or even warn you about it. You can build your 

model as you wish, until you think it is finished and 

correct.” 

 

4.8. Element size and element text 

When an activity model is being built in IBM RSA, the size of elements added 

to the model are changed according to the length of text (element name) typed in by the 

user as shown in Figure 12 and in Figure 13. As a result, after adding text, the user 

generally needs to resize the corresponding element in order to have a better layout 

configuration of the elements in the model. We looked for a toggle option to resize 

elements or not, which would prevent such ‘hypercorrections’ to be automatically 

performed by the system, but couldn’t find any. Not even a broader search in the 

Internet returned anything suggesting that this is a usability problem in IBM RSA. 

 

 

Figure 12. Decision node resided according to the text 

 

Figure 13. Action nodes with different sizes 

 

CDNf notes: The complicated process to resize each element to rearrange 

it in the model can be associated with the CDN Viscosity, 

which is related to resistance to change. A viscous system 

needs many user actions to accomplish one goal. The user 

needs to resize each added element to fit the model. The 

problem with auto-resize always ‘on’ is that a model’s 



21 
 

layout can get visually unbalanced and even difficult to 

read, challenging users to recognize wide geometric shapes 

(like the diamond in Figure 12) as having the same meaning 

as other smaller instances, not to mention the problem of 

spreading the model area way out of the user’s viewport. 

MetacommT 

notes: 

“…what I’ve learned you want or need to do, in which 

preferred ways, and why.” 

“… by connecting UML activity elements using the mouse to 

build a model and the keyboard to assign a name to each 

element.” 

…This is the system that I have, therefore, designed for 

you, and this is the way you can or should use it…” 

 “Therefore, we will enlarge every element added to the 

model so its whole name is displayed. If you want to change 

the size, you have to adjust each one, after adding it to the 

model.” 

4.9. Confusing help content – Interface language vs. local language 

IBM RSA help content displays content in English and in Portuguese all mixed 

up, as shown in Figure 14. There isn’t any consistent language configuration in the Help 

system, as far as we know. We suppose that some of the content is related to the country 

where the user is located, but not all technical content is translated. Therefore, most of it 

is displayed in English. However, some localization algorithm seems to be in place. 



22 
 

 

Figure 14. English and Portuguese content mixed up on the same help item 

CDNf notes: This situation can be related to CDN Hidden dependencies, 

which stands that important links between entities are not 

visible. The user does not know the relation between help 

language and tool language.  

MetacommT 

notes: 

“Here is my understanding of who you are…” 

“I understand that you want to use your local language 

whenever possible, but that you don’t mind using the foreign 

language used in the original software interface itself.” 

 

…This is the system that I have, therefore, designed for 

you, and this is the way you can or should use it…” 

“I have, therefore, left some parts of the system in the 

original design language (English), whereas others are 

being progressively translated into other languages for 

localized experience. Sometimes the content will be in the 

original design language (English), sometimes in your local 

language.” 

 



23 
 

4.10. Confusing help content - Path does not exist! 

Another confusing situation with help content is the indication of a path to a 

menu item that does not exist (shown in Figure 15). The option indicated on the help is 

not available on the IBM RSA menu. The function option can be found on another 

menu item as showed in Figure 15. 

Another confusing situation with help content is the indication of menu items 

that do not exist (shown in Figure 15). The option indicated in the help instruction is not 

available in the corresponding IBM RSA menu. However, the option can be found in 

another menu item as shown in Figure 16. This inconsistency between online Help 

content and interface version is unfortunately not rare, suggesting that agile help update 

and validation checkers are yet to be developed to guarantee that users can trust online 

instructions for how to use systems. 

 

Figure 15. Option indicated on the Help content does not exist on IBM RSA 



24 
 

 

Figure 16. "Make same size" function on another place different from indicated by Help 

 

CDNf notes: The lacking of the menu item indicated in Figure 15 does 

not relate to a CDN itself. It can be a version error, but it 

also illustrates the hidden dependency issues of help and the 

tool itself. 

MetacommT 

notes: 

“Here is my understanding of who you are…” 

“I understand that you do not really need to use the help to 

perform your modeling tasks.” 

…This is the system that I have, therefore, designed for 

you, and this is the way you can or should use it…” 

“Therefore, the help content might show some discrepancies 

with the current tool’s version, like showing a function on a 

different menu item. We are constantly changing! So, the 

help content can be outdated.” 

4.11. Objects need constant refitting 

The activity model uses the partition element to represent the responsible for 

each action modeled. The partition is represented in UML by a delimited area of the 

model, where some elements can be disposed. All elements need to be on a partition. 

During modeling activity, the user needs to be constantly stretching the partition to get a 



25 
 

new element on it, or to fit an element that was already there, but needed some 

replacement. As showed in Figure 17, the action object is not all in the “Manager” 

partition, some of it is outside the model. 

 

 

Figure 17. Partition does not resize itself once one of its elements gets bigger 

 

CDNf notes: This situation can be related to CDN Viscosity, which is the 

resistance to change. A viscous system needs many user 

actions to accomplish one goal. Sometimes the user needs to 

get more space in a partition, he needs to stretch the 

partition them add or move elements. 

MetacommT 

notes: 

“…what I’ve learned you want or need to do, in which 

preferred ways, and why.” 

“… by connecting UML activity elements using the mouse 

to build a model and the keyboard to assign a name to each 

element…” 

…This is the system that I have, therefore, designed for 

you, and this is the way you can or should use it…” 

“We let you add as many elements as you want to the 

partition element, but sometimes you might need to resize it 

to make room for more elements.” 

 



26 
 

4.12. The Metacommunication template filled up 

The Metacommunication template was filled up as presented below: 

“I understand that you have a fair amount of experience with modeling and the 

UML activity model notation. I understand that you do not really need to use the help to 

perform your modeling tasks. If you eventually do need to use the help, you want to use 

your local language whenever possible, but that you don’t mind using the foreign 

language used in the original software interface itself. You build models by connecting 

UML activity elements using the mouse and the keyboard to assign a name to each 

element. You may wish to build models incrementally, which means that some 

intermediary stages in the process may be obviously wrong from a UML semantics 

perspective. You might need some help to prevent incorrect connections, and you are 

constantly paying close attention to all screen states in the system’s interface. To build 

intermediary models, you may wish to use different styles of shapes, with which you 

annotate things that you must take care of in more detail as you make progress in the 

modeling task. Therefore, the system doesn’t check the semantics of the model all the 

time and trust you to be able to track where the evolving model needs to be elaborated 

further in order to be semantically correct. We provide a semantic verification, but it is 

not complete. Only a subset of connections can be checked, and you will find this by 

trial and error. We will help you by not allowing you to make some incorrect 

connections. Since you might slip-up about the incorrect connection sometimes, we 

don’t make a big deal about it. I believe you will quickly notice what you are doing 

wrong. Sometimes, we will help you by correcting some incorrect connections that you 

may try to execute. I don’t need to alert you about it. We correct it and you can go on 

modeling. We provide the semantic verification that can be invoked at any time, 

although it is not a complete verification. In the UML activity model, we allow you to 

use different types of representations (geometric, UML, sketchings). Some connections 

between elements of different types are allowed, but some UML constraints are 

still being checked as you go on modeling, and you will find this by trial 

and error. We will not highlight every semantic mistake, or even warn you about it. You 

can build your model as you wish, until you think it is finished and correct. We will 

enlarge every element added to the model so its whole name is displayed. If you want to 

change the size, you have to adjust each one, after adding it to the model. We left some 



27 
 

parts of the system in the original design language (English), whereas others are being 

progressively translated into other languages for localized experience. Sometimes the 

content will be in the original design language (English), sometimes in your local 

language. The help content might show some discrepancies with the current tool’s 

version, like showing a function on a different menu item. We are constantly changing. 

So, the help content can be outdated. We let you add as many elements as you want to 

the partition element, but sometimes you might need to resize it to make room for more 

elements. We believe that you want to use the system to build UML activity models that 

you can store, print, publish, revise, transform into code or discard along the software 

development process.” 

5. TNP triplet characterization 

In this step, we were able to define some interesting relations among T-N-P 

factors, considering them in pairs or even all of the factors combined. The complete 

TNL triplet characterization, the conclusions and discussion about the combined 

evaluation can be found in the published paper. (Ferreira et al., 2014) 

 

 “T” allows the user to build models using the “N”, but the model built may 

not have a proper meaning as far as the UML activity notation semantics is 

concerned. The user building the model (“P”) can be misled by “T”, while 

using the “N”. 

 “T” does not provide proper feedback information to “P” that “N” is being 

mistakenly used. This is a very common usability problem in a number of 

applications, not only modeling tools. 

 By preventing the user from making an incorrect connection in a UML 

activity model, IBM RSA helps the modeler to achieve better results (“T-N-

P”). It also tells us something about “T-P”, similar to the feedback example, 

as well as about “N”, regarding the ambiguity in UML notation. Because it 

provides a description of the element once it is selected, IBM-RSA also 

supports the “T-N” relation, clarifying the meaning of the notation for the 

people who use it.  



28 
 

  “T” is not handling “N” properly and may mislead “P” into building an 

activity model using the specifications of “N” that does not make any sense 

to other “P” in the process. 

 With the MetacommT, the “P’ part of the triplet considers the designer as 

well as the user of the tool. By providing some degree of modeling liberty to 

users (“Pu”), the designer (“Pd”) indicates that he believes in the users’ 

capacity to be critical about constraints of the model under construction. 

“Pd” provides some validation features, but “Pu” is the ultimate responsible 

for model “correctness”.  

 The indirect mention to other “P” in the development team when the 

designers communicate that models can be printed, published (for sharing 

purposes) or transformed into code, but the apparent inconsistency between 

this and the fact that the final model representation does not clearly 

communicate which parts are semantically verified, and which parts aren’t 

(or cannot be, and why). 



29 
 

6. UML activity model produced 

The following figure presents the UML activity model produced on the evaluation task: 

 



30 
 

References 

1. Blackwell, A., Green, T.: Notational systems–the cognitive dimensions of 

notations framework. HCI Models Theories and Frameworks Toward a 

Multidisciplinary Science (2003), 103–134 

2. de Souza, C. S., Leitão, C. F., Prates, R. O., da Silva, E. J.: The semiotic 

inspection method. In Proc. IHC2006, ACM. (2006), 148-157. 

3. de Souza, C. S., Leitão, C. F.: Semiotic engineering methods for scientific 

research in HCI. Princeton: NJ. Morgan & Claypool. (2009) 

4. de Souza, C. S., Prates, R. O., Barbosa, S. D. J.: A method for evaluating 

software communicability. In Proc. IHC1999, (1999) 17-19. 

5. de Souza, C.S.: The Semiotic Engineering of Human–Computer Interaction. 

Cambridge, MA. The MIT Press. (2005) 

6. Ferreira, J. J., de Souza, C. S., Cerqueira, R. Characterizing the Tool-notation-

people Triplet in Software Modeling Tasks. In Proceeding of the 13th Brazilian 

Symposium on Human Factors in Computing Systems (IHC' 2014), Brazilian 

Computer Society, Foz do Iguaçu, Brazil, 2013. p. 31-40. 

7. Green, T.; Blackwell A.: Cognitive dimensions of information artifacts: a 

tutorial. BCS HCI Conference (1998) 

8. OMG, Unified Modeling Language (UML), V2.4.1- 

http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF. Accessed in August, 

2014. 

http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF

